Cavity-to-cavity interaction in nucleate boiling: The effect of heat conduction within the heater

PDF Version Also Available for Download.

Description

This paper presents a numerical study aimed at analyzing bubble behavior as a function of site location. The effects of site distribution on the nucleate boiling curve are examined. Simple local-instantaneous models that mimic the bubble behavior on the boiling surface were implemented into a three-dimensional finite control volume conduction code. For a given site density, sample cases were run for uniform and nonuniform site distribution. The authors results indicate considerable deviation from linearized theories that always assume a uniform distribution. It is shown that bubble emission frequency is a strong function of site location. Consequently, the bubble flux density … continued below

Physical Description

37 p.

Creation Information

Pasamehmetoglu, K.O. & Nelson, R.A. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents a numerical study aimed at analyzing bubble behavior as a function of site location. The effects of site distribution on the nucleate boiling curve are examined. Simple local-instantaneous models that mimic the bubble behavior on the boiling surface were implemented into a three-dimensional finite control volume conduction code. For a given site density, sample cases were run for uniform and nonuniform site distribution. The authors results indicate considerable deviation from linearized theories that always assume a uniform distribution. It is shown that bubble emission frequency is a strong function of site location. Consequently, the bubble flux density is shown to deviate from a simple periodic behavior with increasing nonuniformity in site distribution. This study further indicates that a uniform site distribution results in minimum area- and time-averaged surface superheat and minimum temperature variations on the boiling surface. As the distribution becomes less uniform, average surface temperature and surface temperature variations along the boiling surface increase. 19 refs., 14 figs., 2 tabs.

Physical Description

37 p.

Notes

OSTI; NTIS; GPO Dep.

Source

  • ASME/AIChE/ANS national heat transfer conference, Minneapolis, MN (USA), 26-31 Jul 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91007396
  • Report No.: LA-UR-91-165
  • Report No.: CONF-910739--7
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5773256
  • Archival Resource Key: ark:/67531/metadc1103792

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • Dec. 11, 2020, 10:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pasamehmetoglu, K.O. & Nelson, R.A. Cavity-to-cavity interaction in nucleate boiling: The effect of heat conduction within the heater, article, January 1, 1991; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1103792/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen