Direct heating containment vessel interactions code (DHCVIC) and prediction of SNL ''SURTSEY'' test DCH-1

PDF Version Also Available for Download.

Description

High-pressure melt ejection from PWR vessels has been identified as a severe core accident scenario which could potentially lead to ''early'' containment failure. Melt ejection, followed by dispersal of the melt by high velocity steam in the cavity beneath the PWR vessel could, according to this scenario, lead to rapid transfer of energy from the melt droplets to the containment atmosphere. This paper describes DHCVIC, an integrated model of the thermal, chemical and hydrodynamic interactions which are postulated to take place during high-pressure melt ejection sequences. The model, which characterizes vessel (or building), is applied to prediction of the Sandia … continued below

Physical Description

7 pages

Creation Information

Ginsberg, T. & Tutu, N. January 1, 1986.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 39 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-pressure melt ejection from PWR vessels has been identified as a severe core accident scenario which could potentially lead to ''early'' containment failure. Melt ejection, followed by dispersal of the melt by high velocity steam in the cavity beneath the PWR vessel could, according to this scenario, lead to rapid transfer of energy from the melt droplets to the containment atmosphere. This paper describes DHCVIC, an integrated model of the thermal, chemical and hydrodynamic interactions which are postulated to take place during high-pressure melt ejection sequences. The model, which characterizes vessel (or building), is applied to prediction of the Sandia National Laboratory ''SURTSEY'' Test DCH-1 and a (post-test) prediction of that test is made.

Physical Description

7 pages

Notes

NTIS, PC A02/MF A01 - GPO.

Source

  • American Nuclear Society and Atomic Industrial Forum joint meeting, Washington, DC, USA, 16 Nov 1986

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: TI86015074
  • Report No.: BNL-NUREG-38472
  • Report No.: CONF-861102-22
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 5289461
  • Archival Resource Key: ark:/67531/metadc1068690

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1986

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • May 3, 2019, 3:54 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 39

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ginsberg, T. & Tutu, N. Direct heating containment vessel interactions code (DHCVIC) and prediction of SNL ''SURTSEY'' test DCH-1, article, January 1, 1986; United States. (https://digital.library.unt.edu/ark:/67531/metadc1068690/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen