Electrochemistry applied to biomass. Progress report, October 1980-September 1981

PDF Version Also Available for Download.

Description

The electrochemical conversion of biomass-derived compounds, obtained through thermochemical pretreatments, into valuable organic chemicals, petrochemical substitutes, and energy-intensive chemicals is investigated. A hardwood-derived lignin obtained from ethanol extraction of the explosively depressurized aspen has been investigated. We have partially characterized this lignin material, and have also submitted it to electrolyses under controlled potential. The electrolytic conditions employed so far affect mainly the carbonyl groups of the ethanol-extracted steam-exploded aspen lignin. We have some evidence of demethoxylation and changed phenolic content after electrolysis. During product isolation, fractionation of the lignin occurs. The material with decreased methoxyl content may be suitable to … continued below

Physical Description

42 pages

Creation Information

Chum, H. L. April 1, 1982.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The electrochemical conversion of biomass-derived compounds, obtained through thermochemical pretreatments, into valuable organic chemicals, petrochemical substitutes, and energy-intensive chemicals is investigated. A hardwood-derived lignin obtained from ethanol extraction of the explosively depressurized aspen has been investigated. We have partially characterized this lignin material, and have also submitted it to electrolyses under controlled potential. The electrolytic conditions employed so far affect mainly the carbonyl groups of the ethanol-extracted steam-exploded aspen lignin. We have some evidence of demethoxylation and changed phenolic content after electrolysis. During product isolation, fractionation of the lignin occurs. The material with decreased methoxyl content may be suitable to replace phenol in phenol-formaldehyde-type resins. We are continuing these electrochemical and chemical investigations. Gel-permeation chromatography is being used to separate and characterize the several lignin fractions. In addition, we are carrying out electrolyses under more powerful reducing conditions which may lead to the cleavage of the main bonds in the lignin molecule (the ..beta..-0-4 ether linkages) producing monomeric and dimeric phenolic compounds. The electrochemistry and photoelectrochemistry of levulinic (4-oxo-pentanoic) acid, the major product of controlled degradation of cellulose by acids, have been investigated. This acid can be viewed as a major product of biomass thermochemical pretreatment or as a by-product of acid hydrolysis to fermentable sugars. Since this acid can be present in waste streams of biomass processing, we investigated the photoelectrochemical reactions of this acid on slurries composed of semiconductor/metal particles. The semiconductor investigated was undoped n-TiO/sub 2/, as anatase, anatase-rutile mixture, or rutile.

Physical Description

42 pages

Notes

NTIS, PC A03/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 1982

Added to The UNT Digital Library

  • Feb. 4, 2018, 10:51 a.m.

Description Last Updated

  • Feb. 9, 2021, 11:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chum, H. L. Electrochemistry applied to biomass. Progress report, October 1980-September 1981, report, April 1, 1982; Golden, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc1068498/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen