Fluctuation analysis

PDF Version Also Available for Download.

Description

This paper briefly reviews sources of noise in Josephson junctions, and the limits they impose on the sensitivity of dc and rf SQUIDS. The results are strictly valid only for a resistively shunted junction (RSJ) with zero capacitance, but should be applicable to point contact junctions and microbridges in so far as these devices can be approximated by the RSJ model. Fluctuations arising from Nyquist noise in the resistive shunt of a single junction are discussed in the limit eI/sub o/R/k/sub B/T << 1 in which a classical treatment is appropriate, and then extend the treatment to the limit eI/sub … continued below

Physical Description

20 pages

Creation Information

Clarke, J. January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

  • Lawrence Berkeley Laboratory
    Publisher Info: California Univ., Berkeley (USA). Lawrence Berkeley Lab.
    Place of Publication: Berkeley, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper briefly reviews sources of noise in Josephson junctions, and the limits they impose on the sensitivity of dc and rf SQUIDS. The results are strictly valid only for a resistively shunted junction (RSJ) with zero capacitance, but should be applicable to point contact junctions and microbridges in so far as these devices can be approximated by the RSJ model. Fluctuations arising from Nyquist noise in the resistive shunt of a single junction are discussed in the limit eI/sub o/R/k/sub B/T << 1 in which a classical treatment is appropriate, and then extend the treatment to the limit eI/sub o/R/k/sub B/T greater than or equal to 1 in which quantum effects become important. The Nyquist limit theory is used to calculate the noise in a dc SQUID, and the results are compared with a number of practical devices. The quantum limit is briefly considered. Results for the predicted sensitivity of rf SQUIDS are presented, and also compared with a number of practical devices. Finally, the importance of l/f noise (f is the frequency) in limiting the low frequency performance of SQUIDS is discussed.

Physical Description

20 pages

Notes

NTIS, PC A02/MF A01.

Source

  • International conference on superconducting quantum interference devices, Berlin, F.R. Germany, 5 May 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-11055
  • Report No.: CONF-8005104-1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 5152362
  • Archival Resource Key: ark:/67531/metadc1052905

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • Jan. 22, 2018, 7:23 a.m.

Description Last Updated

  • Aug. 6, 2019, 12:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Clarke, J. Fluctuation analysis, article, January 1, 1980; Berkeley, California. (https://digital.library.unt.edu/ark:/67531/metadc1052905/: accessed July 16, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen