Search Results

open access

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Description: Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg usi… more
Date: May 2015
Creator: Karewar, Shivraj
open access

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Description: A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains cor… more
Date: May 2016
Creator: Karna, Sanjay K.
open access

Laser Surface Treatment of Amorphous Metals

Description: Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precu… more
Date: May 2014
Creator: Katakam, Shravana K.
open access

Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical Modifications

Description: In-situ x-ray photoemission (XPS) and ex-situ FTIR studies of nanoporous organosilicate glass (OSG) films point to the separate roles of radicals vs. VUV photons in the carbon abstraction. The studies indicate that reaction with O2 in presence of VUV photons (~123 nm) result in significant carbon abstraction within the bulk and that the kinetics of this process is diffusion-limited. In contrast, OSG exposed to atomic O (no VUV) results in Si-C bond scission and Si-O bond formation, but this pro… more
Date: May 2015
Creator: Kazi, Haseeb

Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides for High-Efficient Piezoelectric Sensor

Description: Piezoelectricity in two-dimensional (2D) transition metal dichalcogenides (TMDs) has attracted significant attention due to their unique crystal structure and the lack of inversion centers when the bulk TMDs thin down to monolayer. Although the piezoelectricity effect in atomic-thickness TMDs has been demonstrated, they are not scalable. Herein, we demonstrate a piezoelectric effect from large-scale, sputtered MoS2 and WS2 using a robust defect-engineering based on the thermal-solvent annealing… more
Date: May 2021
Creator: Kim, Junyoung
open access

Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants

Description: Poly(vinyl chloride)(PVC) wire and cable insulation has poor thermal stability, causing the plasticizer to separate from the PVC chain and produce an oily residue, lowering the tensile elongation at break and thus increasing brittleness. We have added 4 wt.% of three different types of cross-linking agents and antioxidants, as well as mixtures of both, to improve the thermal stability of the plasticizer and tensile properties of PVC after thermal exposure. We performed tensile tests, tribologic… more
Date: May 2018
Creator: Kim, Taehwan
open access

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Description: Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of… more
Date: December 2013
Creator: Kinkenon, Douglas
open access

Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses

Description: Rare earth ion doped glasses find applications in optical and photonic devices such as optical windows, laser, and optical amplifiers, and as model systems for immobilization of nuclear waste. Macroscopic properties of these materials, such as luminescence efficiency and phase stability, depend strongly on the atomic structure of these glasses. In this thesis, I have studied the atomic level structure of rare earth doped silicate and aluminophosphate glasses by using molecular dynamics simulati… more
Date: August 2012
Creator: Kokou, Leopold Lambert Yaovi
open access

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

Description: The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differe… more
Date: December 2015
Creator: Komarasamy, Mageshwari

High Temperature Sliding Wear Behavior and Mechanisms of Cold-Sprayed Ti and Ti-TiC Composites

Description: Ti and Ti-based alloys are used in many aerospace and automotive components due to their high strength-to-weight ratio and corrosion resistance. However, room and elevated temperature wear resistance remain an issue, thus requiring some form of secondary hard phase, e.g., refractory carbides and oxides, as well as solid lubrication to mitigate wear. In this study, Ti-TiC (14, 24 and 35 vol% TiC) composite coatings were deposited on mild steel substrates using cold spray with comparisons made to… more
Date: August 2020
Creator: Koricherla, Manindra Varma
open access

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with i… more
Date: May 2008
Creator: Kosuri, Divya
open access

Electrical and Structure Properties of High-κ Barium Tantalite and Aluminum Oxide Interface with Zinc Oxide for Applications in Transparent Thin Film Transistors

Description: ZnO has generated interest for flexible electronics/optoelectronic applications including transparent thin film transistors (TFTs). For this application, low temperature processes that simultaneously yield good electrical conductivity and optical transparency and that are compatible with flexible substrates such as plastic, are of paramount significance. Further, gate oxides are a critical component of TFTs, and must exhibit low leakage currents and self-healing breakdown in order to ensure opt… more
Date: August 2011
Creator: Kuo, Fang-Ling

Crystallization and Lithium Ion Diffusion Mechanism in the Lithium-Aluminum-Germanium-Phosphate Glass-Ceramic Solid Electrolytes

Description: NASCION-type lithium-aluminum-germanium-phosphate (LAGP) glass-ceramic is one of the most promising solid electrolyte (SEs) material for the next generation Li-ion battery. Based on the crystallization of glass-ceramic material, the two-step heat treatment was designed to control the crystallization of Li-ion conducting crystal in the glass matrix. The results show that the LAGP crystal is preferred to internally crystalize, Tg + 60%∆T is the nucleation temperature that provides the highest ion… more
Date: May 2021
Creator: Kuo, Po Hsuen
open access

In-situ Analysis of the Evolution of Surfaces and Interfaces under Applied Coupled Stresses

Description: To study the effect of the substrate support on the nanoscale contact, three different regimes, i.e., graphene on rigid (ultra-crystalline diamond) and on elastic (Polydimethylsiloxane) supports and free-standing graphene, were considered. The contribution of the graphene support to the mechanical and electrical characteristics of the graphene/metal contact was studied using the conductive atomic force microscopy (AFM) technique.The results revealed that the electrical conductivity of the graph… more
Date: August 2020
Creator: Lee, Ji Hyung
open access

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Description: Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (Ni… more
Date: May 2020
Creator: Ley, Nathan A
open access

Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs

Description: Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and p… more
Date: August 2010
Creator: Li, Minghang
open access

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure comb… more
Date: May 2012
Creator: Li, Yun

Processing-Structure-Property Relationships of Reactive Spark Plasma Sintered Boron Carbide-Titanium Diboride Composites

Description: Sintering parameter effects on the microstructure of boron carbide and boron carbide/titanium diboride composites are investigated. The resulting microstructure and composition are characterized by scanning electron microscopy (SEM), x-ray microscopy (XRM) and x-ray diffraction (XRD). Starting powder size distribution effects on microstructure are present and effect the mechanical properties. Reactive spark plasma sintering introduces boron nitride (BN) intergranular films (IGF's) and their eff… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Lide, Hunter
open access

Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion

Description: In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal … more
Date: December 2018
Creator: Lin, Chun-Yu
open access

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (2… more
Date: August 2010
Creator: Lin, Ming-Te

Linking Enhanced Fatigue Life to Design by Modifying the Microstructure

Description: Structural material fatigue is a leading cause of failure and has motivated fatigue-resistant design to eliminate risks to human lives. Intrinsic microstructural features alter fatigue deformation mechanisms so profoundly that, essentially, fatigue properties of structural materials become deviant. With this in mind, we initiated this project to investigate the microstructural effect on fatigue behavior of potential structural high entropy alloys. With a better understanding of the effect of mi… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Liu, Kaimiao
open access

Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium Alloys

Description: Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvat… more
Date: August 2015
Creator: Liu, Yue
open access

Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses

Description: First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural… more
Date: December 2018
Creator: Lu, Xiaonan
open access

Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene

Description: This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. T… more
Date: December 2017
Creator: Lu, Xinyao
Back to Top of Screen