Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).
Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione
Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds
Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new cluster Ru3(CO)10(dmpdmh) (8) and the phosphite-tethered cluster Ru3(CO)9[μ -P(OMe)3] (11). The simple substitution product Ru3(CO)10(dmpdmh), a logical intermediate to clusters 9-11, was synthesized by treating Ru3(CO)12 and dmpdmh with Me3NO in CH2Cl2 at room temperature, and independent thermolysis reactions using cluster 8 were shown to yield clusters 9-11. The tetrahedrane cluster FeCo2(CO)9(μ3-S) reacts with the redox-active ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) to give the disubstituted cluster FeCo2(CO)7(bpcd)(μ3-S) as the sole product. This diphosphine-substituted cluster contains a cobalt-bound, chelating bpcd ligand. The solid-state structure has been unequivocally established by X-ray diffraction analysis. Cyclic voltammetric studies on FeCo2(CO)7(bpcd)(μ3-S) reveal the presence of two quasireversible …
Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products
The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Effects of Web-based Instruction in High School Chemistry.
The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry
To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for monolayer to sub-monolayer coverage of Si surface. Interaction of other metal carbonyl (like Fe, Re, and Rh) is also discussed. The silicon (111) surface modifications with vinyl terminated organic compounds were investigated to form self-assembled monolayers (SAMs) and there after these surfaces were further functionalized. Acrylonitrile and vinylbenzophenone were employed for these studies. Ketone group of vinylbenzophenone anchored to Si surface demonstrated reactivity with reducing and oxidizing agents.
Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions
The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state theory. The energy of NS was computed via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results were employed with three working reactions to find ΔfH0(NS) = 277.3 ± 2 kJ mol-1 and ΔfH298(NS) = 278.0 ± 2 kJ mol-1. This thermochemistry is consistent with, but much more precise than, earlier literature values. A kinetic study of the reaction of H + CH2CCl2 was conducted over the temperature range of 298 - 680 K. The reaction was found to be pressure dependent and results of the rate constants and their interpretation via unimolecular rate theory are …
Layered Double Hydroxides and the Origins of Life on Earth
A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to the hydroxide layers, while in the 3:1 hosts the square-planar anions have enough space to lie more nearly parallel to the LDH cation layers, giving basal spacings of approximately 8 Å. It has been found that the LDH Mg2Al(OH)6Cl catalyzes the self-addition of cyanide, to give in a one-pot reaction at low concentrations an increased yield of diaminomaleonitrile and in addition, at higher ($0.1M) concentrations, a purple-pink material that adheres to the LDH. We are investigating whether this reaction also occurs with hydrotalcite itself, what is the minimum effective concentration of cyanide, and what can be learned about the products …
Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life
The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.
Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines
The second order rate constants for nucleophilic substitution by methoxide of (Z)- and (E)-O-methylbenzohydroximoyl fluorides [C6H4C(F)=NOCH3] with various substituents on the phenyl ring [p-OCH3 (1h, 2h), p-CH3 (1g, 2g), p-Cl (1f, 2f), p-H (1e, 2e), (3,5)-bis-CF3 (1i, 2i)] in 90:10 DMSO:MeOH have been measured. A Hammett plot of these rate constants vs σ values gave positive ρ values of 2.95 (Z isomer) and 3.29 (E isomer). Comparison of these rates with methoxide substitution rates for Omethylbenzohydroximoyl bromide [C6H4C(Br)=NOCH3] and Omethylbenzohydroximoyl chloride [C6H4C(Cl)=NOCH3] reveal an element effect for the Z isomers of Br:Cl:F(1e) = 2.21:1.00:79.7 and for the E isomers of Cl:F(2e) = 1.00:18.3. With the p-OCH3-imidoyl halides the following element effects are found: Br:Cl:F(1h) = 2.78:1.00:73.1 for the Z isomer and Br:Cl:F(2h) = 1.97:1.00:12.1 for the E isomer. Measurement of activation parameters revealed ∆S≠ = -17 eu for 1e and ∆S≠ = -9.9 eu for 2e. Ab initio calculations (HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6- 31+G*//HF/6-31+G*, HF-SCIPCM/6-31+G*//HF/6-31+G*) were performed to define the reaction surface. These calculations demonstrate a relatively large barrier for nucleophilic attack in relation to halogen loss and support the experimental findings that this reaction proceeds by an addition-elimination mechanism (AN# + DN). The imidoyl fluorides have been used to synthesize highly functionalized O-methyloximes by reaction with enolate anions derived from malononitrile, ethyl cyanoacetate, and diethyl malonate. Acid-catalyzed isomerization of compounds containing the O-methyloxime moiety have been investigated with ab initio calculations (HF/6-31+G*, MP2/6- 31+G*//HF/6-31+G*, B3LYP/6-31+G*//HF/6-31+G*). Barriers for rotation around the C-N bond following protonation have been calculated. The calculated barriers are discussed in relation to an isomerization mechanism of protonation-rotation versus a nucleophilic catalysis.
Preparation and characterization of praseodymium oxide films and powders.
Nanocrystalline praseodymium oxide films have been successfully generated on stainless steel substrates. The electrochemical deposition was performed in the cathode compartment of a divided electrochemical cell with a regular three-electrode configuration. The green films obtained by electrodeposition were then annealed at high temperatures for 1-3 hours. X-ray diffraction revealed the fluorite structure of Pr6O11 and the crystallite size was calculated. X-ray photoelectron spectroscopy was employed to study the composition of the oxide films and also the oxidation state of Pr. Scanning electron microscopy was utilized to study the surface texture and microstructure of deposits. Fourier transform infrared spectrometery was used to investigate the composition of the films. The effects of different conditions on the green films were also studied such as different pH values of the electrolyte solution, different deposition modes, different supporting electrolytes and different applied current densities. Sintering experiments were conducted to investigate the properties of the green films. Praseodymium oxide powders were also successfully prepared by combining electrochemical methods with sintering processes. The praseodymium oxide powders were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The crystallite sizes of the powders were evaluated.
Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds
The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. A linear correlation between the calculated hydrogen bond strength and the predicted 1H-NMR chemical shift was established. It is concluded that the pKa matching within the enzyme active site of the two species involved in the LBHB is important to maximizing catalytic stabilization.
Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one
Treatment of dichloromaleic anhydride and 1,8-diaminonaphthalene in either benzene or toluene under refluxing conditions gives low yields of the new heterocyclic compound 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. This product has been isolated and characterized in solution by NMR, IR, and UV/vis spectroscopies, and the solid-state structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been established by X-ray crystallography. The nature of the HOMO and LUMO levels of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been studied by extended Hückel molecular orbital calculations.
Back to Top of Screen