Phase Transformations in Refractory High Entropy Alloys

PDF Version Also Available for Download.

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

High entropy alloys (HEAs) based on refractory elements have shown a great potential for high temperature structural applications. In particular, the ones containing Al, exhibits a microstructure similar to the γ-γ' in Ni-based superalloys. While these alloys exhibit impressive strengths at room temperature (RT) and at elevated temperatures, the continuous B2 matrix in these alloys is likely to be responsible for their brittle behavior at RT. Phase stability of five such alloys are studied by thermo-mechanical treatments and characterization techniques using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two of these alloys showed an inverted microstructure, where the … continued below

Physical Description

xii, 132 pages

Creation Information

Soni, Vishal August 2019.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 103 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Soni, Vishal

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

High entropy alloys (HEAs) based on refractory elements have shown a great potential for high temperature structural applications. In particular, the ones containing Al, exhibits a microstructure similar to the γ-γ' in Ni-based superalloys. While these alloys exhibit impressive strengths at room temperature (RT) and at elevated temperatures, the continuous B2 matrix in these alloys is likely to be responsible for their brittle behavior at RT. Phase stability of five such alloys are studied by thermo-mechanical treatments and characterization techniques using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two of these alloys showed an inverted microstructure, where the disordered BCC phase becomes continuous, and therefore, they were characterized in detail using SEM, TEM, atom probe tomography (APT) and synchrotron x-ray diffraction experiments. The phenomenon of phase inversion lead to a better combination of strength and ductility as compared to the non-inverted microstructure.To enhance the stability of B2 intermetallic phase which provides the strength when present in a BCC matrix, multicomponent B2 phase compositions stable at 1000°C in some of the above studied alloys, were melted separately. The aim was to establish a single phase B2 at 1000°C and understand the mechanical behavior of these single-phase multicomponent B2 intermetallic alloys. These alloys exhibited a ductile behavior under compression and retained ~1 GPa yield strength at temperature up to 600°C. The ductile nature of these alloys is attributed to the change in bonding nature form directional to metallic bonding, possibly resulting from a significantly high configurational entropy compared to binary or ternary stoichiometric B2 compounds.

Physical Description

xii, 132 pages

Subjects

Keywords

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2019

Added to The UNT Digital Library

  • Aug. 29, 2019, 10:25 a.m.

Description Last Updated

  • Sept. 18, 2021, 1:52 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 103

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Soni, Vishal. Phase Transformations in Refractory High Entropy Alloys, dissertation, August 2019; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1538735/: accessed April 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen