Bio-Inspired Material Surfaces with Self-cleaning, Micromanipulation and Water Collection

PDF Version Also Available for Download.

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Geckos are famous for the skill of switchable adhesion that they use to stick on various surface while keep their fingers super clean. In the dissertation, a unique mechanism was discovered to explain gecko self-cleaning phenomena. Using atomic force microscopy (AFM), we managed to compare the microparticle-substrate adhesion and the microparticle-seta adhesion with a single seta bonded to the AFM cantilever. A dynamic effect was approved that high pulling-off speed could increase the microparticle-substrate adhesion and thus the self-cleaning appears at high moving speed. Based on the self-cleaning theory, a gecko-inspired N-doped graphene surface with switchable adhesion was achieved, which … continued below

Physical Description

xx, 133 pages

Creation Information

Wan, Yiyang May 2019.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 142 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Wan, Yiyang

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Geckos are famous for the skill of switchable adhesion that they use to stick on various surface while keep their fingers super clean. In the dissertation, a unique mechanism was discovered to explain gecko self-cleaning phenomena. Using atomic force microscopy (AFM), we managed to compare the microparticle-substrate adhesion and the microparticle-seta adhesion with a single seta bonded to the AFM cantilever. A dynamic effect was approved that high pulling-off speed could increase the microparticle-substrate adhesion and thus the self-cleaning appears at high moving speed. Based on the self-cleaning theory, a gecko-inspired N-doped graphene surface with switchable adhesion was achieved, which was designed into a bio-inspired micromanipulator with a success rate over 90%. When electrical bias was applied on this biomimetic surface, the charge concentration induced an electrical double layer (ELD) on the convex surfaces, which attracts polar water molecules to form a water bridge on it, significantly enhancing the adhesion on the wrinkled graphene surface, mimicking the capillary force on beetle feet. Therefore, the bio-inspired adhesive surface can be controlled with speed, electrical bias, humidity and different material surfaces. The water attraction phenomenon on the polarized surface was further tested for the potential application of water collection and evaporation in microsystems.

Physical Description

xx, 133 pages

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2019

Added to The UNT Digital Library

  • June 9, 2019, 9:09 p.m.

Description Last Updated

  • July 14, 2021, 4:22 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 142

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wan, Yiyang. Bio-Inspired Material Surfaces with Self-cleaning, Micromanipulation and Water Collection, dissertation, May 2019; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc1505257/: accessed April 28, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen