Search Results

Application of the Wigner Formalism to a Slightly Relativistic Quantum Plasma
A slightly relativistic fermion gas is described by the dynamical theory obtained from the Wigner distribution function. The problem is approached in a self-consistent manner including the two-body Darwin Hamiltonian. The goal is to find the departures from equilibrium and dispersion relations for wave propagation in the gas.
Effect of Sample Geometry on Magnetomorphic Oscillations in the Hall Effect in Cadium at Liquid-Helium Temperatures
This thesis presents observations on size-effect oscillations in the Hall effect in an oriented single crystal of highly pure cadmium at liquid-helium temperatures. All measurements were made in transverse magnetic field.
Gamma Rays Resulting from Neutron Scattering in Cesium
The purpose of this investigation was to attempt to resolve the energy levels of Cs133 that can be excited by inelastic scattering of 14 Mev neutrons.
Gurevich Magnetomorphic Oscillations in Single Crystals of Aluminum at Helium Temperatures
The Sondheimer theory was tested by looking for oscillatory phenomena in a group of single crystals representing a range in dimensions from matchbox geometry to thin-film geometry. The single crystals were identical with respect to impurity content, strain, orientation, surface condition, and probe placement.
Homogeneous Canonical Formalism and Relativistic Wave Equations
This thesis presents a development of classical canonical formalism and the usual transition schema to quantum dynamics. The question of transition from relativistic mechanics to relativistic quantum dynamics is answered by developing a homogeneous formalism which is relativistically invariant. Using this formalism the Klein-Gordon equation is derived as the relativistic analog of the Schroedinger equation. Using this formalism further, a method of generating other relativistic equations (with spin) is presented.
The Optimum Design of a Broad-band Helix for Use in Electron Spin Resonance
This thesis examines optimum designs for broad-band helix to be used in electron spin resonance.
Size Effect in the Electrical Conductivity of Bismuth
If a physical dimension of a metallic specimen is comparable with, or smaller than, the mean free path of the conduction electrons, then the observed electrical conductivity will be less than that of a conventional bulk sample. This phenomenon is called a size effect, and is the result of electron scattering from the specimen surfaces. In the present investigation, measurements were made on electropolished monocrystalline specimens ranging from matchbox geometry to thick-film geometry in order to obtain further information on the size effect in bismuth at liquid helium temperatures.
A Study and Critique of the Mean Position Concept in Relativistic Wave Mechanics
The basic concept to be used in studying the question of one-particle interpretations of relativistic wave equations is that of observables and operator representations that are different from the more usual classically motivated observables and representations. In particular, the concept of a mean-position observable will be used to determine to what extent the one-particle "problems" can be resolved.
A Study of the Celestial Gamma-ray Flux
This thesis is a study of the celestial gamma-ray flux. It reviews several of the proposed mechanisms for producing high energy gamma rays and describes several of the attempts to detect their presence. Also included is a short historical review of the spark chamber, along with a qualitative description of its operation.
Back to Top of Screen