Analysis of Human Transfer RNA Gene Heteroclusters

PDF Version Also Available for Download.

Description

Two phage lambda clones encompassing human tRNA genes have been isolated from a human gene library harbored in bacteriophage lambda Charon-UA. One of the clones (designated as hLeuU) containing a 20-kb human DNA fragment was isolated and found to contain a cluster of four tRNA genes. An 8.2-kb Hindlll fragment encompassing the four tRNA genes was isolated from the 20-kb fragment and subcloned into pBR322 for restriction mapping and DNA sequence analysis. The four tRNA genes are arranged as two tandem pairs with the first pair containing a proline tRNAAGQ gene and a leucine tRNAAAQ gene and the second pair … continued below

Physical Description

viii, 104 leaves: ill.

Creation Information

Chang, Yung-Nien December 1986.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by the UNT Libraries to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 49 times. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Chang, Yung-Nien

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Two phage lambda clones encompassing human tRNA genes have been isolated from a human gene library harbored in bacteriophage lambda Charon-UA. One of the clones (designated as hLeuU) containing a 20-kb human DNA fragment was isolated and found to contain a cluster of four tRNA genes. An 8.2-kb Hindlll fragment encompassing the four tRNA genes was isolated from the 20-kb fragment and subcloned into pBR322 for restriction mapping and DNA sequence analysis. The four tRNA genes are arranged as two tandem pairs with the first pair containing a proline tRNAAGQ gene and a leucine tRNAAAQ gene and the second pair containing another proline tRNAAGG gene and a threonine tRNAuQU gene. The two pairs are separated about 3 kb from each other, and the leucine tRNAAAG gene is of opposite polarity from the other three tRNA genes. The tRNA transcription units were sequenced by a unidirectional deletion dideoxyribonucleotide chain-termination method in the M13mpl8 and 19 vectors. The coding regions of the four tRNA genes contain characteristic internal split promoter sequences and do not encode intervening sequences nor the CCA trinucleotide found in mature tRNAs. The proline t R N A A G G gene is separated from the leucine t R N A A A Q gene by a 725-bp intergenic region and the second proline t R N A A G Q is 315 bp downstream of the threonine t R N A U G U gene. The coding sequences of the two proline tRNA genes are identical. The 3'-flanking regions near the 3*-ends of these four tRNA genes have typical RNA polymerase III termination sites of at least four c o n s e c u t i v e T nt. There is no homology between the 5'-flanking regions of these genes. All four tRNA genes are potentially functional, since they are transcribed by RNA polymerase III in an in vitro HeLa cell extract. Another phage lambda clone (designated as XhLeu8) was also found to contain four tRNA genes. One of the tRNA genes was characterized by DNA sequencing. The tRNA gene has an anticodon for leucine, but has three base substitutions from the leucine tRNA^A G and the leucine tRNAAAQ gene of AhLPT, occurring in the D-stem, D-loop and T-loop regions. The substitution in the T-loop is a C to T transition at an otherwise invariant position of the consensus sequence, 5'-GTTC-3'» within the B-block of the internal split promotor. Thus, this gene may more properly be classified as a leucine tRNA pseudogene.

Physical Description

viii, 104 leaves: ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1986

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • April 6, 2016, 11:06 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 49

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chang, Yung-Nien. Analysis of Human Transfer RNA Gene Heteroclusters, dissertation, December 1986; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc332435/: accessed July 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; .

Back to Top of Screen