UNT Libraries Government Documents Department - 561 Matching Results

Search Results

1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company
This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.
1992 National Census for District Heating, Cooling and Cogeneration
District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.
1992 Toxic Chemical Release Inventory: Emergency Planning and Community Right-To-Know-Act of 1986 Section 313
Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA) requires the annual submittal of toxic chemical release information to the US Environmental Protection Agency (EPA). The following document is the July 1993 submittal of the EPCRA Toxic Chemical Release Inventory Report (Form R). Included is a Form R for chlorine and for lead, the two chemicals used in excess of the established regulatory thresholds at the Hanford Site by the US Department of Energy, Richland Operations Office and its contractors during calendar year 1992.
Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0
The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.
Accelerator Technology Division progress report, FY 1992
This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.
Accessibility for Lower Hybrid Waves in PBX-M
Understanding the wave damping mechanism in the presence of a `spectral gap` is an important issue for the current profile control using Lower Hybrid Current Drive (LHCD). The authors examine a traditional explanation based upon upshifting of the wave parallel refractive index (n{sub {parallel}}) and find that there can be an upper bound in the n{sub {parallel}} upshift. The amount of upshift is not sufficient to bridge the spectral gap completely under some PBX-M LHCD conditions. There is experimental evidence, however, that current was driven even under such conditions. Another mechanism is also considered, based upon the 2-D velocity space dynamics coupled with a compound wave spectrum, here consisting of forward- and backward-running waves. The runaway critical speed relative to the phase speeds of these waves plays an important role in this model.
Accessibility for lower hybrid waves in PBX-M
Understanding the wave damping mechanism in the presence of a spectral gap' is an important issue for the current profile control using Lower Hybrid Current Drive (LHCD). The authors examine a traditional explanation based upon upshifting of the wave parallel refractive index (n[sub [parallel]]) and find that there can be an upper bound in the n[sub [parallel]] upshift. The amount of upshift is not sufficient to bridge the spectral gap completely under some PBX-M LHCD conditions. There is experimental evidence, however, that current was driven even under such conditions. Another mechanism is also considered, based upon the 2-D velocity space dynamics coupled with a compound wave spectrum, here consisting of forward- and backward-running waves. The runaway critical speed relative to the phase speeds of these waves plays an important role in this model.
Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1
This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.
Adsorption of water vapor on reservoir rocks
Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.
Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993
Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.
Adult Literacy and New Technologies: Tools for a Lifetime
Adult education needs are difficult to define and difficult to meet; what constitutes adequate literacy changes continually as the demands facing individuals grow more complex. This report is an attempt to identify those capabilities, along with limitations, and outline how new information technologies can be marshaled to meet the goal of a fully literate citizenry.
Advanced coal-fueled gas turbine systems. Quarterly report, January--March 1993
All scheduled tests for the slagging combustor program were completed prior to this reporting period. The draft topical report for the slagging combustor testing was begun in January and the draft submitted to DOE/METC for review in March. Work was completed on the (Advanced Turbine Systems) Phase 1 program and the draft topical begun in January. The ATS Phase 1 draft topical report was submitted to DOE/METC in March. Comments to the report were received back from METC prior to the end of March allowing for the preparation of the final version of the report to begin. Conceptual design of a combustion turbine system that can be integrated in a pressurized fluidized bed combustor (PFBC) application was completed at the end of March. An intermediate design review was held in February with METC and a draft of the topical report was begun during the reporting period. Details of the individual subtask work for the first generation PFBC combustion turbine system conceptual design are discussed in the ``Generic Turbine Design Study Final Report`` which was issued June 1993 to DOE/METC.
Advanced concepts report on the detection of xenon with a miniature whole air sampler capable of extended operating times
Many monitoring activities require the collection of whole air samples over an extended time interval without loss or concentration of any atmospheric constituents. Described is the development and laboratory testing of a whole air sampler capable of collecting a 100 liter sample over a period of 0.63 days. The sampler has an empty weight of 7.79 kg and an overall size of 20.8-cm {times} 20.8-cm {times} 66.1-cm. The conceptual design for the development of smaller, higher-performance whole air samplers is also reported.
Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993
Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the best operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.
Advanced fusion diagnostics. Final technical report, July 15, 1991--July 14, 1993
Key among various issues of ignited plasmas is understanding the physics of energy transfer between thermal plasma particles and magnetically confined, highly energetic charged ions in a tokamak device. The superthermal particles are products of fusion reactions. The efficiency of energy transfer by collisions, from charged fusion products (e.g., {alpha}-particles) to plasma ions, grossly determines whether or not plasma conditions are self-sustaining without recourse to auxiliary heating. Furthermore, should energy transfer (efficiency be poor, and substantial auxiliary heating power is required to maintain reacting conditions within the plasma, economics may preclude commercial viability of fusion reactors. The required charged fusion product information is contained in the energy distribution function of these particles. Knowledge of temporal variations of the superthermal particle energy distribution function could be used by a fusion reactor control system to balance plasma conditions between thermal runaway and a modicum of fusion product energy transfer. Therefore, diagnostics providing data on the dynamical transfer of alpha-particle and other charged fusion product energy to the plasma ions are essential elements for a fusion reactor control system to insure that proper plasma conditions are maintained. The objective of this work is to assess if spectral analysis of rf radiation emitted by charged fusion products confined in a magnetized plasma, called ion cyclotron emission (ICE), can reveal the vital data of the distribution function of the superthermal particles.
Advanced heat pump cycle
The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.
Advanced heat pump cycle. Final performance report
The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.
Advanced thermally stable jet fuels. Technical progress report, February 1993--March 1993
This project was initiated on August 1, 1992. The starting date resulted in this project being one month out of synchronization with the normal quarterly calendar (i.e., January, April, July, and October). On advice of Mr. John Augustine, DOE/PETC, the present report is prepared to cover only two months work, so that future quarterly reports will be aligned with the conventional reporting schedule. A significant pressure dependence was observed for the pyrolysis of n-tetradecane at 450{degree}C for 30 min. It appears that at least two processes are affected by the reactant pressure, but in opposite directions. The influence of inert gas pressure is dependent on both the initial sample volume and the pressure range. However, when the inert gas pressure is within a certain specific range, the changes in the sample volume have no impact on n-tetradecane conversion. Below or above this range, increasing inert gas pressure can either decrease or increase conversion, depending on the sample volume.
Advances in passive-remote and extractive Fourier transform infrared systems
The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in under one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors will discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. The authors have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant.
Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report
This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.
Air quality assessment and control, Task 2.0. Semi-annual report, March 1--June 30, 1993
Emissions of fine particles are of concern because these particles can be deposited in the lower respiratory system through normal breathing. The potential problem is further compounded because hazardous trace elements, such as selenium and arsenic, are known to be concentrated on such fine particles. Control device removal efficiency is lowest for respirable particles, so the potentially most hazardous particles from coal combustion are collected with the lowest removal efficiency. Therefore, a current need exists to develop superior, but economical, methods to control emissions of air toxic particulate matter. One approach is to model the relationships between the cohesive properties of fly ash and particulate collector performance in electrostatic precipitators (ESPs) and fabric filters. In ESPs, a balance between good dust release and minimum redispersion must be achieved for optimum ESP fine-particle collection efficiency. To achieve high fine-particle collection efficiency with fabric filters, the large pores in the fabric must be adequately bridged, and reentrainment must be kept to a minimum while still allowing for adequate dust cake release. However, the defining relationships between cohesive dust properties and particulate collector performance have not been adequately developed. Therefore, the goal of the Fine Particulate Control project is the development of methods to measure the cohesive strength and reentrainment potential of fly ashes and to model emissions of fine particles based on these measurements. A long-term project goal is to develop the models to the point where they can be used to help design particulate control devices for the lowest level of fine-particle emissions at a reasonable cost.
Algorithmic advances in stochastic programming
Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.
Alternative Coca Reduction Strategies in the Andean Region
This report identifies opportunities for and constraints to reducing Andean coca production through: 1) improving U.S. alternative development efforts and 2) applying biological control technology (bio-control) to eradicate illegally produced coca.
Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components
This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.
Analysis and computer tools for separation processes involving nonideal mixtures. Progress report, December 1, 1992--November 30, 1993
This research is concerned with developing mathematical analysis, numerical analysis, and computer tools for separation processes involving nonideal, homogeneous, and heterogeneous multi-component mixtures. Progress, organized in terms of mathematical analysis, numerical analysis, and algorithmic development, is summarized.
Analysis and design of robust decentralized controllers for nonlinear systems
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Analysis/Control of in-Bed Tube Erosion Phenomena in the Fluidized Bed Combustion (FBC) System. Technical Progress Report No. 3, [April 1, 1993--June 30, 1993]
This technical report summarizes the research work performed and progress achieved during the period of during the period of April 1, 1993 to June 30, 1993. The erosion test was conducted in the bench-scale FBC model along with the preparation of the test particles/tube specimens. The effect of the tube-to-distributor (T-to-D) clearance was discussed on the tube specific weight loss for low, medium, and high superficial velocities. Electrostatic impact probes for measuring the particle-surface collision frequency were designed to verify the some of the measurement and to identify the primary erosion points. The erosion models were briefly to understand the phenomena of in-bed erosion. The project has been progressing well. Instrumentation for the erosion-measuring will be continued: to measure the tube weight loss under different operating conditions. Development of the electrostatic probes will be continued and implemented for measuring the particle-tube collision frequency in the bench-scale FBC model.
Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103
This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.
Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming
This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.
Annual report for Ion Replacement Program
Ion replacement electrorefining is an innovative electrochemical approach to purifying and separating metals. This approach overcomes the shortcomings of conventional electrorefining and has the potential for processing a wider range of metals and metal halide salts. Salt waste is also minimized with this approach. The key element of ion replacement electrorefining is the ion replacement electrode. This electrode allows a decoupling of the electrotransport process into two separate steps, anodic dissolution and cathodic deposition. Three key accomplishments described in this report that demonstrate the feasibility of ion replacement electrorefining are: (1) we have identified a suitable sodium/{beta}{double_prime}-alumina/molten salt electrolyte system that functions reproducibly at 723 K, (2) we have oxidized and deposited dysprosium, lanthanum, uranium, and titanium by using a sodium ion replacement electrode. In several experiments, an actual separation of dysprosium and lanthanum was observed, and (3) we have identified a metal alloy, Li{sub x}Sb, as an alternative ion replacement electrode. The next stage in the program is the design, construction, and testing of a laboratory-scale electrorefiner. Follow-on development with funding from industrial and federal sponsors is being pursued.
Annual report Rockwell International Hot Laboratory decommissioning GFY 1992
OAK-B135 Annual report Rockwell International Hot Laboratory decommissioning GFY 1992
Annual report to Congress, FY 1992
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to inform Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).
Anomalous scattering calculation of x- and gamma rays
No Description Available.
Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA
Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic …
Applicable or Relevant and Appropriate Requirements (ARARs) for Remedial Action at the Oak Ridge Reservation: A compendium of major environmental laws. Environmental Restoration Program
Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances must comply with applicable or relevant and appropriate requirements (ARARS) or standards under federal and state environmental laws. The US Department of Energy (DOE) Oak Ridge Reservation (ORR) was placed on the National Priorities List by the US Environmental Protection Agency (EPA) on November 21, 1989, effective December 21, 1989. As a result of this listing, DOE, EPA, and the Tennessee Department of Environment and Conservation have signed a Federal Facility Agreement (FFA) for the environmental restoration of the ORR. Section XXI(F) of the FFA calls for the preparation of a draft listing of all ARARs as mandated by CERCLA {section}121. This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at the ORR. A description of the terms ``applicable`` and ``relevant and appropriate`` is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Tennessee are listed in tables. In addition, the major provisions of the Resource Conservation and Recovery Act, the Safe Drinking Water Act, the Clean Water Act, the Clean Air and other acts, as they apply to hazardous waste cleanup, are discussed. In the absence of ARARS, CERCLA {section}121 provides for the use of nonpromulgated federal criteria, guidelines, and advisories in evaluating the human risk associated with remedial action alternatives. Such nonpromulgated standards are classified as ``to-be-considered`` (TBC) guidance. A ion of available guidance is given; summary tables fist the available federal standards and guidance information. In addition, the substantive contents of the DOE orders as they apply to remediation of radioactively contaminated sites are discussed as TBC guidance.
The appropriateness of one-dimensional Yucca Mountain hydrologic calculations; Yucca Mountain Site Characterization Project
This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed.
Approximate techniques for predicting size effects on cleavage fracture toughness (J{sub c})
This investigation examines the ability of an elastic T-stress analysis coupled with modified boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar geometries. The approximate stresses are used as input to estimate the effective driving force for cleavage fracture (J{sub 0}) using the micromechanically based approach introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar cracked geometries are conducted which have elastic biaxiality parameters ({beta}) ranging from {minus}0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign of {beta} indicate the rate at which crack-tip constraint changes with increasing applied load. All results pertain to a moderately strain hardening material (strain hardening exponent ({eta}) of 10). These analyses suggest that {beta} is an effective indicator of both the accuracy of T-MBL estimates of J{sub 0} and of applicability limits on evolving fracture analysis methodologies (i.e. T-MBL, J-Q, and J/J{sub 0}). Specifically, when 1{beta}1>0.4 these analyses show that the T-MBL approximation of J{sub 0} is accurate to within 20% of a detailed finite-element analysis. As ``structural type`` configurations, i.e. shallow cracks in tension, generally have 1{beta}1>0.4, it appears that only an elastic analysis may be needed to determine reasonably accurate J{sub 0} values for structural conditions.
Aquatic Plant Management Program current status and seasonal workplan
The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.
ARIES tokamak reactor study
This report examines the feasibility of a standard poloidal diverter design for ARIES- 2/4 with the determination of the peak thermal loading on, and the plasma temperature facing a poloidal double null diverter. The ARIES-2/4 reactors produce 2,141 MW of fusion power of which 1712 MW is contained in the neutron channel. Of the remaining 429 MW of charged particle power, 47 MW is radiated from the core by bremsstrahlung and synchrotron modes to the vessel walls. The remaining 382 MW of charged particle or transport power crosses the core/edge interface. The fact that the bulk of the power is contained in the neutron channel makes the application of a poloidal divertor possible. The ARIES-2/4 diverter constraints for peak heat load and peak particle temperature are set by current technology and materials knowledge. Divertor geometry constraints are imposed by the plasma equilibrium and the 2/4 vacuum vessel. The diverter heat load and plasma temperatures are determined from edge particle and energy balances. These balances are important characteristics of the plasma edge because the transport power from the plasma core must pass through the edge and be deposited on tokamak components. The Braams' B2 code is a multifluid ion and electron energy and momentum transport code for the plasma edge and is adopted for the design of the ARIES-2/4 diverter.
ARIES tokamak reactor study. [Annual] report, 1 December 1992--30 November 1993
This report examines the feasibility of a standard poloidal diverter design for ARIES- 2/4 with the determination of the peak thermal loading on, and the plasma temperature facing a poloidal double null diverter. The ARIES-2/4 reactors produce 2,141 MW of fusion power of which 1712 MW is contained in the neutron channel. Of the remaining 429 MW of charged particle power, 47 MW is radiated from the core by bremsstrahlung and synchrotron modes to the vessel walls. The remaining 382 MW of charged particle or transport power crosses the core/edge interface. The fact that the bulk of the power is contained in the neutron channel makes the application of a poloidal divertor possible. The ARIES-2/4 diverter constraints for peak heat load and peak particle temperature are set by current technology and materials knowledge. Divertor geometry constraints are imposed by the plasma equilibrium and the 2/4 vacuum vessel. The diverter heat load and plasma temperatures are determined from edge particle and energy balances. These balances are important characteristics of the plasma edge because the transport power from the plasma core must pass through the edge and be deposited on tokamak components. The Braams` B2 code is a multifluid ion and electron energy and momentum transport code for the plasma edge and is adopted for the design of the ARIES-2/4 diverter.
De-ashing of coal liquids with ceramic membrane microfiltration and diafiltration. Quarterly technical progress report, January 1--March 31, 1993
Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. This program is directed towards development of an improved process for de-ashing and recovery of coal-derived residual oil: the use of ceramic membranes for high-temperature microfiltration and disfiltration. Using laboratory-scale ceramic membrane modules, samples of a coal-derived residual oil containing ash will be processed by crossflow microfiltration, followed by solvent addition and refiltration (disfiltration). Recovery of de-ashed residual oil will be demonstrated. Data from this program will be used to develop a preliminary engineering design and cost estimate for a demonstration pilot plant incorporating full-scale membrane modules. In addition, estimates for production system capital and operating costs will be developed to assess process economic feasibility.The five program tasks include (1) ceramic membrane fabrication, (2) membrane test system assembly, (3) testing of the ceramic membranes, (4) design of a demonstration system using full scale membrane modules, and (5) development of estimates for microfiltration capital and operating costs and assessment of process economic feasibility. A subcontract is being sought with Exxon Research and Engineering (ER+E) to conduct microfiltration and diafiltration with CeraMem`s modules using a coal liquid made at Exxon`s liquefaction facility in Baton Rouge LA. To help plan the test program at Exxon and to anticipate how the CeraMem module many perform, CeraMem made mass balance calculations of a prototypical diafiltration process. These calculations predict that 80% to 90% of the residual oil can be recovered in an ash-free form even with modest ratios (2 to 4) of diafiltration solvent volume to residual oil volume. The calculations also say that no more than three diafiltration stages will likely be economical.
Assessing the role of ancient and active geothermal systems in oil-reservoir evolution in the eastern Basin and Range province, western USA. Annual progress report, June 1, 1992--May 31, 1993
Results of our research on the oil fields of the Basin and Range province of the western USA continue to support the following concept: Convecting, moderate-temperature geothermal systems in this region have fostered and in some cases critically influenced the generation, migration, and entrapment of oil. At one Basin-Range field (Grant Canyon), oil-bearing and aqueous fluid inclusions in late-stage hydrothermal quartz were entrapped at temperatures comparable to those now prevailing at reservoir depths (120--130{degrees}C); apparent salinities of the aqueous varieties match closely the actual salinity of the modern, dilute oil-field waters. The inclusion-bearing quartz has the oxygen-isotopic signature for precipitation of the mineral at contemporary temperatures from modern reservoir waters. Measured and fluid-inclusion temperatures define near-coincident isothermal profiles through the oil-reservoir interval, a phenomenon suggesting ongoing heat and mass transfer. These findings are consistent with a model whereby a still-active, convectively circulating, meteoric-hydrothermal system: (1) enhanced porosity in the reservoir rock through dissolution of carbonate; (2) hydrothermally sealed reservoir margins; (3) transported oil to the reservoirs from a deep source of unknown size and configuration; and (4) possibly accelerated source-rock maturation through an increase in the local thermal budget. Grant Canyon and other Basin-Range oil fields are similar to the oil-bearing, Carlin-type, sediment-hosted, disseminated gold deposits of the nearby Alligator Ridge district. The oil fields could represent either weakly mineralized analogues of these deposits, or perhaps an incipient phase in their evolution.
Assessment of full power turbine trip start-up test for C. Trillo 1 with RELAP5/MOD2. International Agreement Report
C. Trillo I has developed a model of the plant with RELAP5/MOD2/36.04. This model will be validated against a selected set of start-up tests. One of the transients selected to that aim is the turbine trip, which presents very specific characteristics that make it significantly different from the same transient in other PWRs of different design, the main difference being that the reactor is not tripped: a reduction in primary power is carried out instead. Pre-test calculations were done of the Turbine Trip Test and compared against the actual test. Minor problems in the first model, specially in the Control and Limitation Systems, were identified and post-test calculations had been carried out. The results show a good agreement with data for all the compared variables.
Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1
The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.
Assessment of RELAP5/MOD2 against a natural circulation experiment in Nuclear Power Plant Borssele. International Agreement Report
As part of the ICAP (International Code Assessment and Applications Program) agreement between ECN (Netherlands Energy Research Foundation) and USNRC, ECN has performed a number of assessment calculations for the thermohydraulic system analysis code RELAP5/MOD2/36.05. This document describes the assessment of this computer program versus a natural circulation experiment as conducted at the Borssele Nuclear Power Plant. The results of this comparison show that the code RELAP5/MOD2 predicts well the natural circulation behaviour of Nuclear Power Plant Borssele.
Assessment of RELAP5/MOD2 against ECN-reflood experiments. International Agreement Report
As part of the ICAP (International Code Assessment and Applications Program) agreement between ECN (Netherlands Energy Research Foundation) and USNRC, ECN has performed a number of assessment calculations with the computer program RELAP5. This report describes the results as obtained by ECN from the assessment of the thermohydraulic computer program RELAP5/MOD2/CY 36.05 versus a series of reflood experiments in a bundle geometry. A total number of seven selected experiments have been analyzed, from the reflood experimental program as previously conducted by ECN under contract of the Commission of the European Communities (CEC). In this document, the results of the analyses are presented and a comparison with the experimental data is provided.
Assessment of Technetium in the Savannah River Site Environment
Assessment of Technetium in the Savannah River Site Environment is the last in a series of eight documents on individual radioisotopes released to the environment as a result of SRS operations. The earlier documents describe the environmental consequences of tritium cesium, iodine, uranium plutonium, strontium, and carbon. Technetium transport and metabolism have been studied by the nuclear industry because it is a fission product of uranium, and by the medical community because {sup 99m}Tc commonly is used as a diagnostic imaging agent in nuclear medicine. Technetium has been produced at SRS during the operation of five production reactors. The only isotope with environmental significance is {sup 99}Tc. Because of the small activities of {sup 99}Tc relative to other fission products, such as {sup 90}Sr and {sup 137}Cs, no measurements were made of releases to either the atmosphere or surface waters. Dose calculations were made in this document using conservative estimates of atmospheric releases and from a few measurements of {sup 99}Tc concentrations in the Savannah River. Technetium in groundwater has been found principally in the vicinity of the separation areas seepage basins. Technetium is soluble in water and follows groundwater flow with little retardation. While most groundwater samples are negative or show little technetium a few samples have levels slightly above the limits set by the EPA for drinking water. The overall radiological impact of SRS {sup 99}Tc releases on the offsite maximally exposed individual during 38 years of operations can be characterized by maximum individual doses of 0.1 mrem (atmospheric) and 0.8 mrem (liquid), compared with a dose of 13,680 mrem from non-SRS sources during the same time period. Technetium releases have resulted in a negligible risk to the environment and the population it supports.
Assist in the Recovery of Bypassed Oil From Reservoirs in the Gulf of Mexico. Quarterly Status Report, April 1, 1993--June 30, 1993
Much of the remaining oil offshore is trapped in formations that are extremely complex due to intrusions of salt domes. Conventional seismic processing techniques cannot clearly image either these traps or the full extent of oil-bearing segments near the salt domes; therefore, substantial volumes of oil may have remained uncontacted by previous drilling. Recently, however, significant innovations have been made in seismic processing and mathematical migration of seismic signal. In addition, significant advances have been made in deviated and horizontal drilling technologies and applications. These technology advances make it possible to reprocess existing seismic data to identify non-contacted portions of the reservoirs, which can then be contacted using advanced drilling technologies to kick out new wells from existing wells. Effective application of these technologies, along with improved recovery methods, offers opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for enhanced recovery and other advanced recovery processes. During this reporting period, data collection continued from the Minerals Management Service (MMS) and several operators. Modifications to BOAST II and MASTER reservoir simulators for the integration of radial grid systems and for use in simulating miscible gas injection processes in steeply dipping reservoirs continued. The testing of the experimental apparatus designed for studying the recovery of attic oil began. Analysis of data obtained from Taylor Energy in South Marsh 73 field continued.
Asymptotic analysis, Working Note No. 1: Basic concepts and definitions
In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter {epsilon} as {epsilon} {down_arrow} 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, {epsilon}{sub o}) {yields} X, where X is a normed vector space of functions defined on a domain D {epsilon} R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion.
Asymptotic analysis: Working Note No. 2, Approximation of integrals
In this note we discuss the approximation of integrals that depend on a parameter. The basic tool is simple, namely, integration by parts. Of course, the power of the tool is evidenced in applications. The applications are many; they include Laplace integrals, generalized Laplace integrals, Fourier integrals, and Stokes' method of stationary phase for generalized Fourier integrals. These results illustrate beautifully Hardy's concept of applications of mathematics, that is, certain regions of mathematical theory in which the notation and the ideas of the (method of integration by parts] may be used systematically with a great gain in clearness and simplicity''. The notation differs slightly from Working Note No. 1, for reasons that are mainly historical. The asymptotic analysis of integrals originated in complex analysis, where the (real or complex) parameter, usually denoted by x, is usually introduced in such a way that the interesting behavior of the integrals occurs when x [yields] [infinity] in some sector of the complex plane. As there is nothing sacred about notation, and historical precedent is as good a guide as any, we follow convention and denote the parameter by x, focusing on the behavior of integrals as x [yields] [infinity] along the real axis or, if x is complex, in some sector of the complex plane. The connection with the notation of Working Note No. 1 is readily established by identifying the small parameter [epsilon] with [vert bar]x[vert bar][sup [minus]1].
Back to Top of Screen