Search Results

Biotic Factors and Temperature Tolerances via Critical Thermal Methodology in Goldfish
CTMinimum and CTMaximum were measured in 620 goldfish to determine if biotic factors, in particular starvation, condition factor and size, affect temperature tolerance. Twenty-eight days of starvation adversely affected both upper and lower temperature tolerance. Condition factor was related to upper but not lower temperature tolerance.
The Potential of Coelomocyte Chemotaxis as an Immune Biomarker in the Earthworm, Lumbricus terrestris
Coelomocyte migration responses, both random and chemotatic, were examined in the earthworm Lumbricus terrestris. Coelomocyte random migration patterns towards non-stimulatory, non-chemotatic solutions were described. Migration responses to immunostimulatory agents lipopolysaccharides (LPS), N-formly-methionyl-leucyl-phenylalanine (FMLP), sheep erythrocytes, Saccharomyces cerevisiae, Aeromonas hydrophila, Eisenia fetida and Rhabditis pellio were characterized. Chemotaxis was reported to LPS, FMLP, sheep erythrocytes, S. cerivesae and E. fetida. Bio-indicator potential of chemotaxis is discussed relative to variability in migration responses.
Ecological Enhancement of Timber Growth: Applying Compost to Loblolly Pine Plantations
This study explored the application of compost onto a small loblolly pine tree forest in northeast Texas. Its purpose was to determine if the application of various amounts of compost would provide for accelerated rates of growth for the trees. Soil parameters were also monitored. A total of 270 trees were planted and studied in a northeast Texas forest ecosystem. Compost rates of 5, 25, and 50 tons per acre with either soil or compost backfill were utilized and compared to a control without compost. Nonparametric and parametric ANOVA and Chi-Square tests were utilized. The results indicated that greater application rates retained greater moisture and higher pH levels in the soil. Compost applications also yielded a greater survival rate as well as larger tree height and diameter when compared to the control. The 25 ton/acre application backfilled in native soil achieved the greatest average in height and diameter when compared to the averages for the control plot. Greater growth differences for the 25S application can be attributed to additional nutrients coupled with a stable pH consistent with native soil acidity.
An Assessment of the Use of Seeding, Mowing, and Burning in the Restoration of an Oldfield to Tallgrass Prairie in Lewisville, Texas
An examination of the effectiveness of seeding, burning, and mowing in the reestablishment of tallgrass prairie species on overgrazed and abandoned pastureland. The study site is a 20 acre tract on U.S. Corps of Engineers land below Lake Lewisville in Denton County, Texas. The site was partitioned into thirty-nine 40 by 40 meter plots with seeding (carried out in 1996) and management treatment (burning, mowing, and no maintenance carried out in 1998) randomly applied following a two level design. For each plot, nine stratified-random 0.1 m2 subplots were examined and shoot counts for each species recorded. The effects of the treatments on individual species and species richness were analyzed with a two-way ANOVA followed by a SNK multiple range test, both on ranked data. Community level analysis was conducted with both a MANOVA on ranked data and a Canonical Correspondence Analysis on raw data. Results indicate that seeding positively affected species richness, particularly when combined with either burning or mowing in the early spring. Mowing also significantly increased species richness in areas that were not seeded, while burning negatively affected species richness on unseeded plots. Treatments significantly affected community composition with treatments having the most clear effect on spring and summer forbs.
The Role of Rainfed Farm Ponds in Sustaining Agriculture and Soil Conservation in the Dry High Valley Region of Cochabamba, Bolivia: Design Considerations and Post Impoundment Analysis
Lack of sufficient water for irrigation is a major problem in and around the valleys surrounding the town of Aiquile, Cochabamba Bolivia. In addition, much of the region is undergoing desertification compounded by drought, deforestation, bad traditional agricultural practices, over grazing and a "torrential" rainfall pattern leading to severe soil erosion and low agricultural production. Between 1992 and 1994, the author constructed a network of 24 small, mostly rainfed farm ponds to increase agricultural production and alleviate soil erosion and land-use problems by improving cover conditions. A 5-year post-impoundment analysis was carried out in 1998. The analysis examined current pond conditions, design criteria, irrigation water / crop production increases and the alleviation of land-use problems. Current pond conditions fell into four distinct categories with only 25 percent of the ponds being deemed as "functioning well." The project increased irrigation in the region and improved cover conditions in 66 percent of the pond sites.
Monitoring Watershed Health in the Upper Trinity River Basin, North Central Texas
This study conducts watershed analysis using biological and geo-spatial techniques. Incorporating landscape features with biological attributes has been shown to be an effective method of monitoring environmental quality within watersheds. In situ biomonitoring using the Asiatic Clam, Corbicula fluminea, habitat suitability, and water quality data were evaluated for their potential to describe ecological conditions in agricultural and urban areas within the Upper Trinity River watershed. These data were analyzed with GIS to identify effects of land use on ecological conditions. C. fluminea downstream of point source effluents was effective detecting in-stream toxicity. Ambient toxicity appears to have improved in the Trinity, although urban influences limit aspects of aquatic life. No association between habitat quality and land use was identified.
Interspecific Competition Between Hygrophila polysperma and Ludwigia repens, Two Species of Importance in the Comal River, Texas
Hygrophila polysperma is a plant native to Asia that has been introduced into the Comal River, TX and is thriving while Ludwigia repens, a species native to the river appears to be declining. Both plants have similar morphologies and occupy similar habitats in the river. Two plant competition experiments were conducted to examine the competitive interactions between the two species. First, an experimental design was developed in which established Ludwigia plants were 'invaded' by sprigs of Hygrophila to determine if established Ludwigia populations would be negatively impacted by invasion. The second experiment focused on establishment and growth of sprigs of each species under three competition scenarios. Results show that the continued growth of well-established Ludwigia plants was significantly depressed by the invasion of Hygrophila in comparison with those that had not been invaded. Furthermore, the growth of Hygrophila sprigs was uninhibited by the presence of Ludwigia, but the presence of Hygrophila negatively impacted the growth of Ludwigia sprigs. There was no difference in the growth of Hygrophila sprigs whether planted alone, with Ludwigia sprigs or even if planted into stands of established Ludwigia.
Back to Top of Screen