Search Results

Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides
The semiconducting silicides offer significant potential for use in optoelectronic devices. Full implementation of the materials, however, requires the ability to tailor the energy gap and band structure to permit the synthesis of heterojunctions. One promising approach is to alloy the silicides with Ge. As part of an investigation into the synthesis of semiconducting silicide heterostructures, a series of β-Fe(Si1−xGex)2 epilayer samples, with nominal alloy content in the range 0 < x < 0.15, have been prepared by molecular beam epitaxy on Si(100). I present results of the epitaxial and crystalline quality of the films, as determined by reflection high-energy electron diffraction, Rutherford backscattering spectroscopy, and double crystal x-ray diffraction, and of the band gap dependence on the alloy composition, as determined by Fourier transform infrared spectroscopy. A reduction in band gap was observed with increasing Ge content, in agreement with previous theoretical predictions. However Ge segregation was also observed in β-Fe(Si1−xGex)2 epilayers when x > 0.04. Osmium silicide films have been grown by molecular beam epitaxy on Si(100). The silicides have been grown using e-beam evaporation sources for both Os and Si onto Si(100) substrates at varying growth rates and temperatures ranging from 600-700ºC. The resulting films have been analyzed using reflection high-energy electron diffraction, Raman spectroscopy, reflectivity measurements, in-plane and out of plane X-ray diffraction and temperature dependent magnetotransport. A change in crystalline quality is observed with an increase in Si overpressure. For a lower silicon to osmium flux ration (JSi/JOs=1.5) both OsSi2 and Os2Si3 occur, whereas with a much larger Si overpressure (JSi/JOs>4), crystalline quality is greatly increased and only a single phase, Os2Si3, is present. The out-of-plane X-ray diffraction data show that the film grows along its [4 0 2] direction, with a good crystal quality as evidenced by the small FWHM in the rocking curve. …
Nonlinear UV Laser Build-up Cavity: An Efficient Design
Using the concept of the build-up cavity for second harmonic generation to produce 243nm laser light, an innovative cavity is theoretically explored using a 15mm length CLBO crystal. In order to limit the losses of the cavity, the number of effective optical surfaces is kept to only four and the use of a MgF2 crystal is adopted to separate the harmonic and fundamental laser beam from each other. The cavity is shown to have an expected round trip loss of five tenths of a percent or better, resulting in a conversion efficiency greater than 65%.
Back to Top of Screen