Development report for dual-burst disks

PDF Version Also Available for Download.

Description

Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were … continued below

Physical Description

42 p.

Creation Information

Fusco, A.M. November 1, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

Physical Description

42 p.

Notes

OSTI as DE97000575

Source

  • Other Information: PBD: Nov 1996

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1996

Added to The UNT Digital Library

  • July 25, 2015, 2:20 a.m.

Description Last Updated

  • March 1, 2016, 3:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 26

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Fusco, A.M. Development report for dual-burst disks, report, November 1, 1996; New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc688690/: accessed June 11, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen