Search Results

open access

TDNA Monthly Office Manager's Report: June/July 2005

Description: Monthly report written by the Texas Daily Newspaper Association's (TDNA's) office manager, Darla Thompson, to Ken Whalen providing a summary of revenues and account balances, programs, meetings, and other activities in the office during the previous months.
Date: July 29, 2005
Creator: Thompson, Darla
Partner: UNT Libraries Special Collections
open access

TDNA Board of Directors Meeting Agenda, July 28, 2005

Description: Agenda for July 28, 2005, Texas Daily Newspaper Association Board of Directors meeting held at the Headliners Club in Austin, Texas. Agenda items include the review for organizational aspects of TDNA, finance report, membership services, convention report and an executive session.
Date: July 28, 2005
Creator: Texas Daily Newspaper Association
Partner: UNT Libraries Special Collections
open access

TDNA Meeting Minutes, July 28, 2005

Description: Minutes for July 28, 2005 Texas Daily Newspaper Association Board of Directors Meeting at the Headliners Club in Austin, Texas. The members in attendance of the meeting were, Larry Walker, Bob Carlquist, Gary Borders, Darrell Coleman (mis-identified), Buddy King, Charles Moser, Doug Toney, Ken Whalen and secretary Darla Thompson. President Larry Walker opened the meeting and Ken Whalen presented his reports on the administrative and the TDNA annual meeting.
Date: July 28, 2005
Creator: Texas Daily Newspaper Association
Partner: UNT Libraries Special Collections
open access

Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products Quarterly Report

Description: The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.
Date: July 13, 2005
Creator: Kennel, Elliot B.; Chen, Chong; Dadyburjor, Dady; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department
open access

ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION

Description: This annual technical progress report summarizes the work accomplished during the third year of the program, January-December 2004, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The groundwork was laid for both the membrane materials development and the construction of the required facilities for testing the membrane reliability and performance. It has resulted in the construction of a single tube and multi-tube combustion test facility. Design for Six Sigma (DFSS) principles were applied to the membrane material selection process. The required ceramic powders were ordered and will be evaluated in 2005. Design of experiment techniques (fuel gas mixture design) were applied to the membrane performance evaluation process. The first results indicate that the oxygen flux of the membrane is significantly higher when the porous support is exposed to the fuel gas mixture instead of air. Failures of the oxygen transport membrane tube did not occur during the reporting period which is supporting evidence that our emphasis on design for robustness is yielding the desired result. All work on the project was performed in a safe manner as proven by zero recordable injuries or lost work days.
Date: July 1, 2005
Creator: Hassel, Bart van & Sirman, John
Partner: UNT Libraries Government Documents Department
open access

State selective dynamics of molecules, clusters, and nanostructures

Description: Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the “size-tunable” properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2.
Date: July 25, 2005
Creator: Keto, John W.
Partner: UNT Libraries Government Documents Department
open access

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: April-June 2005

Description: West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we should be able to change the water-gas ratio in the reservoir and, hence, improve the productivity from the well. In our Engineering and Geological Analysis section, we present our rock typing analysis work which combines the geological data with engineering data to develop a unique rock characteristics description. The work demonstrates that it is possible to incorporate geological description in engineering analysis so that we can come up with rock types which have unique geological characteristics, as well as unique petrophysical characteristics. Using this rock typing scheme, we intend to develop a detailed reservoir description in our next quarterly report.
Date: July 1, 2005
Creator: Kelkar, Mohan
Partner: UNT Libraries Government Documents Department
open access

Refractory for Black Liquor Gasifiers Quarterly Report

Description: The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided …
Date: July 1, 2005
Creator: Headrick, William L., Jr.; Karakus, Musa & Liang, Xiaoting
Partner: UNT Libraries Government Documents Department
open access

Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

Description: The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.
Date: July 15, 2005
Creator: Haun, Michael J.
Partner: UNT Libraries Government Documents Department
open access

A Compact High Gradient Pulsed Magnetic Quadpole

Description: A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Conductor angles are determined by a method of direct multipole elimination which theoretically eliminates the first four higher order multipole field components. Coils are fabricated from solid round film-insulated conductor, wound as a single layer ''non-spiral bedstead'' coil having a diagonal leadout entirely within one upturned end. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends.
Date: July 5, 2005
Creator: Shuman, D.; Faltens, A.; Kajiyama, Y.; Kireeff-Covo, M. & Seidl, P.
Partner: UNT Libraries Government Documents Department
open access

LIGNITE FUEL ENHANCEMENT

Description: This 4th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from April 1st through June 30th of 2005. It also summarizes the subsequent purchasing activity and dryer/process construction.
Date: July 7, 2005
Creator: Bullinger, Charles
Partner: UNT Libraries Government Documents Department
open access

Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure Quarterly Technical Progress Report: April-June 2005

Description: This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.
Date: July 27, 2005
Creator: Smalley, Anthony J.; Harris, Ralph E.; Bourn, Gary D. & Deffenbaugh, Danny M.
Partner: UNT Libraries Government Documents Department
open access

RARE KAON DECAYS.

Description: Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.
Date: July 19, 2005
Creator: LITTENBERG, L.
Partner: UNT Libraries Government Documents Department
open access

Screening Methods for Selection of Surfactant Formulations for IOR From Fractured Carbonate Reservoirs

Description: This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.
Date: July 1, 2005
Creator: Goddard, William A., III; Tang, Yongchun; Shuler, Patrick; Blanco, Mario; Wu, Yongfu & Jang, Seung Soon
Partner: UNT Libraries Government Documents Department
open access

PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

Description: The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.
Date: July 11, 2005
Creator: Ren, M.; Goodell, P.; Kelts, A.; Anthony, E.Y.; Fayek, M.; Fan, C. et al.
Partner: UNT Libraries Government Documents Department
open access

Distributed Generation with Heat Recovery and Storage

Description: Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.
Date: July 29, 2005
Creator: Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M. & Zhou, Nan
Partner: UNT Libraries Government Documents Department
open access

Monte carlo Techniques for the Comprehensive Modeling of Isotopic Inventories in Future Nuclear Systems and Fuel Cycles

Description: The development of Monte Carlo techniques for isotopic inventory analysis has been explored in order to facilitate the modeling of systems with flowing streams of material through varying neutron irradiation environments. This represents a novel application of Monte Carlo methods to a field that has traditionally relied on deterministic solutions to systems of first-order differential equations. The Monte Carlo techniques were based largely on the known modeling techniques of Monte Carlo radiation transport, but with important differences, particularly in the area of variance reduction and efficiency measurement. The software that was developed to implement and test these methods now provides a basis for validating approximate modeling techniques that are available to deterministic methodologies. The Monte Carlo methods have been shown to be effective in reproducing the solutions of simple problems that are possible using both stochastic and deterministic methods. The Monte Carlo methods are also effective for tracking flows of materials through complex systems including the ability to model removal of individual elements or isotopes in the system. Computational performance is best for flows that have characteristic times that are large fractions of the system lifetime. As the characteristic times become short, leading to thousands or millions of passes through the system, the computational performance drops significantly. Further research is underway to determine modeling techniques to improve performance within this range of problems. This report describes the technical development of Monte Carlo techniques for isotopic inventory analysis. The primary motivation for this solution methodology is the ability to model systems of flowing material being exposed to varying and stochastically varying radiation environments. The methodology was developed in three stages: analog methods which model each atom with true reaction probabilities (Section 2), non-analog methods which bias the probability distributions while adjusting atom weights to preserve a fair game (Section 3), and …
Date: July 30, 2005
Creator: Wilson, Paul P.H.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen