Search Results

open access

Raising Photoemission Efficiency with Surface Acoustic Waves

Description: We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.
Date: July 1, 2012
Creator: A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law
Partner: UNT Libraries Government Documents Department
open access

Effects of Global Boundary and Local Collisionality on Magnetic Reconnection in a Laboratory Plasma

Description: The magnetic reconnection process is studied in a wide range of operating conditions in the well-controlled Magnetic Reconnection Experiment. The reconnection rate is observed to be a function of both global (i.e., system size) and local (collisionality) plasma parameters. When only local collisionality is lowered, the current sheet is shortened while effective resistivity is enhanced, both accelerating reconnection rates. At a fixed collisionality, the current sheet length increases with system size, resulting in the reduction of the reconnection rate. These results quantitatively agree with a generalized Sweet-Parker analysis.
Date: July 24, 2007
Creator: A. Kuritsyn, H. Ji, S.P. Gerhardt, Y. Ren, and M. Yamada
Partner: UNT Libraries Government Documents Department
open access

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

Description: A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.
Date: July 8, 2012
Creator: A., Lukhanin; U., Rohatgi; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O et al.
Partner: UNT Libraries Government Documents Department
open access

F(1) for B (forward) D*ln from lattice QCD

Description: The authors would like to determine |V{sub cb}| from the exclusive semi-leptonic decay B{yields}D*lv. The differential decay rate is d{Lambda}/dw = G{sub F}{sup 2}/4{pi}{sup 3}(w{sup 2}-1){sup 1/2}m{sub D*}{sup 3} (m{sub B}-m{sub D*}){sup 2}G(w)|V{sub cb}|{sup 2}|F{sub B{yields}D*}(w)|{sup 2}, where w = v {center_dot} v{prime} and G(1) = 1. At zero recoil (w = 1) heavy-quark symmetry requires F{sub B{yields}D*}(1) to be close to 1. So, |V{sub cb}| is determined by dividing measurements of d{Lambda}/dw by the phase space and well-known factors, and extrapolating to w {yields} 1. This yields |V{sub cb}|F{sub B{yields}D*}(1), and F{sub B{yields}D*}(1) is taken from ''theory''. To date models [1] or a combination of a rigorous inequality plus judgement [2] have been used to estimate F{sub B{yields}D*}(1) - 1. In this work [3] they calculate F{sub B{yields}D*}(1) with lattice gauge theory, in the so-called quenched approximation, but the uncertainty from quenching is included in the error budget.
Date: July 12, 2002
Creator: A.S. Kronfeld, P.B. Mackenzie and J.N. Simone
Partner: UNT Libraries Government Documents Department
open access

NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

Description: The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model …
Date: July 29, 2011
Creator: AA, KRUGER; PR, HRMA & R, POKORNY
Partner: UNT Libraries Government Documents Department
open access

[Letter: From Maison to Royal]

Description: A letter from Don Maison, from the AIDS Service of Dallas, to Charlie Royal, from the State Bar of Texas, discussing the attached legal documents.
Date: July 25, 1994
Creator: AIDS Service of Dallas
Partner: UNT Libraries Special Collections
Back to Top of Screen