Search Results

open access

Status Report to The Institute of Museum and Library Services July 1 through December 31, 2002

Description: This document provides a status report on the Z39.50 Interoperability Testbed Project (Z-Interop) covering the period of July 1, 2002 through December 31, 2002. The previous status report covered a three-month period from April 1, 2002 through June 30, 2002. This document highlights activities and accomplishments to communicate to IMLS progress on this project since the last status report.
Date: January 1, 2003
Creator: Moen, William E.
Partner: UNT College of Information
open access

Integrated Box Interrogation System (IBIS) Preliminary Design Study

Description: Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.
Date: January 13, 2003
Creator: Croft, Stephen; Martancik, David; Young, Brian; Chard, Patrick M. J.; Estop, Robert J.; Melton, Sheila et al.
Partner: UNT Libraries Government Documents Department
open access

Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit Quarterly Report

Description: Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.
Date: January 31, 2003
Creator: Sinner, Joe
Partner: UNT Libraries Government Documents Department
open access

Regulation of new depleted uranium uses.

Description: This report evaluates how the existing U.S. Nuclear Regulatory Commission (NRC) regulatory structure and pending modifications would affect full deployment into radiologically uncontrolled areas of certain new depleted uranium (DU) uses being studied as part of the U.S. Department of Energy's DU uses research and development program. Such new DU uses include as catalysts (for destroying volatile organic compounds in off-gases from industrial processes and for hydrodesulfurization [HDS] of petroleum fuels), semiconductors (for fabricating integrated circuits, solar cells, or thermoelectric devices, especially if such articles are expected to have service in hostile environments), and electrodes (for service in solid oxide fuel cells, in photoelectrochemical cells used to produce hydrogen, and in batteries). The report describes each new DU use and provides a detailed analysis of whether any existing NRC licensing exemption or general license would be available to users of products and devices manufactured to deploy the new use. Although one existing licensing exemption was found to be possibly available for catalysts used for HDS of petroleum fuels and one general license was found to be possibly available for catalysts, semiconductors, and electrodes used in hydrogen production or batteries, existing regulations would require most users of products and devices deploying new DU uses to obtain specific source material licenses from the NRC or an Agreement State. This situation would not be improved by pending regulatory modifications. Thus, deployment of new DU uses may be limited because persons having no previous experience with NRC or Agreement State regulations may be hesitant to incur the costs and inconvenience of regulatory compliance, unless using a DU-containing product or device offers a substantial economic benefit over nonradioactive alternatives. Accordingly, estimating the risk of deploying new DU-containing products and devices in certain radiologically uncontrolled areas is recommended. If the estimated risks of such deployment are …
Date: January 22, 2003
Creator: Ranek, N. L.
Partner: UNT Libraries Government Documents Department
open access

Tuning of laser pulse shapes in grating-based compressors for optimal electron acceleration in plasmas

Description: The temporal shape (rise time, fall time, skewness) of 50 - 200-fs Ti:sapphire laser pulses has been controlled by appropriate adjustment of a grating-pair compressor. It was found that the skewness of the laser pulse envelope is particularly sensitive to the third-order component of the spectral phase. Introducing such a third-order phase offset by detuning the grating pair relative to the optimum pulse compression settings allowed the generation of skewed pulses. As an example of an application, these skewed pulses were used to optimize a laser-plasma electron accelerator.
Date: January 22, 2003
Creator: Toth, Cs.; Faure, J.; van Tilborg, J.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. et al.
Partner: UNT Libraries Government Documents Department
open access

DOE-NABIR PI Workshop: Abstracts 2003

Description: The mission of the NABIR program is to provide the fundamental science that will serve as the basis for the development of cost-effective bioremediation and long-term stewardship of radionuclides and metals in the subsurface at DOE sites. The focus of the program is on strategies leading to long-term immobilization of contaminants in situ to reduce the risk to humans and the environment. Contaminants of special interest are uranium, technetium, plutonium, chromium, and mercury. The focus of the NABIR program is on the bioremediation of these contaminants in the subsurface below the root zone, including both vadose and saturated zones. The program consists of four interrelated Science Elements (Biotransformation, Community Dynamics/Microbial Ecology, Biomolecular Science and Engineering, and Biogeochemistry). The program also has a cross-cutting Assessment Element that supports development of innovative approaches and technologies to support the science elements. An element called Bioremediation and its Societal Implications and Concerns (BASIC) addresses potential societal issues of implementing NABIR scientific findings. The material presented at this year's workshop focuses on approximately 60 research projects funded in FY 2000-2003 by the Environmental Remediation Sciences Division in DOE's Office of Biological and Environmental Research (BER) in the Office of Science. Abstracts of NABIR research projects are provided in this book.
Date: January 28, 2003
Partner: UNT Libraries Government Documents Department
open access

The Savannah River Site Accelerated Clean-Up Mission: Salt Waste Disposal

Description: High Level Waste at SRS is in two principal forms: Sludge and Salt (water-soluble waste). This paper discusses a plan to dispose of the salt waste which will save up to 5.4 billion dollars (life cycle). The flowsheet for each process is described, annual production estimates shown, regulatory issues discussed and the progress to date summarized.
Date: January 28, 2003
Creator: Jones (contact), R.T.
Partner: UNT Libraries Government Documents Department
open access

SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

Description: Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2--Establishment of Detailed Design Specifications and Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide range of coiled-tubing string designs …
Date: January 1, 2003
Creator: Kothari, Kiran M. & Pittard, Gerard T.
Partner: UNT Libraries Government Documents Department
open access

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

Description: The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.
Date: January 1, 2003
Creator: Baldrey, Kenneth E.
Partner: UNT Libraries Government Documents Department
open access

Improved Thermophotovoltaic (TPV) Performance Using Dielectric Photon Concentrations (DPC)

Description: This report presents theoretical and experimental results, which demonstrate the feasibility of a new class of thermophotovoltaic (TPV) energy converters with greatly improved power density and efficiency. Performance improvements are based on the utilization of the enhanced photon concentrations within high refractive index materials. Analysis demonstrates that the maximum achievable photon flux for TPV applications is limited by the lowest index in the photonic cavity, and scales as the minimum refraction index squared, n{sup 2}. Utilization of the increased photon levels within high index materials greatly expands the design space limits of TPV systems, including: a 10x increase in power density, a 50% fractional increase in conversion efficiency, or alternatively reduced radiator temperature requirements to as low as {approx} 1000 F.
Date: January 3, 2003
Creator: Baldasaro, P. F. & Fourspring, P. M.
Partner: UNT Libraries Government Documents Department
open access

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

Description: Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.
Date: January 22, 2003
Creator: Karner, D. & Francfort, J.E.
Partner: UNT Libraries Government Documents Department
open access

XFD progress report.

Description: In May 2002, the Advanced Photon Source (APS) was reorganized into three divisions: the Accelerator Systems Division (ASD), the APS Operations Division (AOD), and the Experimental Facilities Division (XFD). Parts of the former User Program Division (UPD) were incorporated into XFD; other parts were incorporated into AOD. This Progress Report summarizes the main scientific and technical activities of XFD and parts of the former UPD from January 2001 through June 2002. The report is divided into two major sections, (1) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, and (2) User Technical Support, which describe the technical activities and research and development (R&D) accomplishments of the XFD and former UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications by XFD and UPD staff members during the time period covered by this report.
Date: January 22, 2003
Creator: Gluskin, E.
Partner: UNT Libraries Government Documents Department
open access

Albeni Falls Wildlife Mitigation : Annual Report 2002.

Description: The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.
Date: January 1, 2003
Creator: Terra-Berns, Mary
Partner: UNT Libraries Government Documents Department
open access

Production of Plutonium Metal from Aqueous Solutions

Description: The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.
Date: January 16, 2003
Creator: Orth, D.A.
Partner: UNT Libraries Government Documents Department
open access

CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

Description: Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can …
Date: January 31, 2003
Creator: Huber, Brian J.
Partner: UNT Libraries Government Documents Department
open access

Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples

Description: We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique with a 500 kHz transducer. Two types of samples were tested: a clean fine sand from the upper portion of the surficial aquifer, and clayey-silty sand with shell fragments and phosphate nodules from the lower portion. Either NAPL trichloroethene or toluene was injected into the initially water-saturated sample. Maximum NAPL saturations ranged from 30 to 50% of the pore space. P-wave velocity varied by approximately 4% among the water-saturated samples, while velocities decreased by 5 to 9% in samples at maximum NAPL saturation compared to water-saturated conditions. The clay and silt fraction as well as the larger scatterers in the clayey-silty sands apparently caused greater P-wave attenuation compared to the clean sand. The presence of NAPLs caused a 34 to 54% decrease in amplitudes of the first arrival. The central frequency of the transmitted energy ranged from 85 to 200 kHz, and was sensitive to both grain texture and presence of NAPL. The results are consistent with previous trends observed in homogeneous sand packs. More data will be acquired to interpret P-wave tomograms from crosswell field measurements, determine the cause of high attenuation observed in the field data and evaluate the sensitivity of seismic methods for NAPL detection.
Date: January 31, 2003
Creator: Geller, Jil T.; Ajo-Franklin, Jonathan B. & Majer, Ernest L.
Partner: UNT Libraries Government Documents Department
open access

Effects of 108 Days Tritium Exposure on UHMW-PE, PTFE, and Vespel(R)

Description: Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), also known as Teflon(R), and Vespel(R) polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for 108 days. Sample mass and size measurements to calculate density, spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of this exposure on these samples. This technical report is the first report from this research program.
Date: January 7, 2003
Creator: Clark, E.A.
Partner: UNT Libraries Government Documents Department
open access

Reactive Multiphase Behavior of CO2 in Saline Aquifers Beneath the Colorado Plateau

Description: Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region represent unique natural laboratories for studying the conditions that control long-term storage of CO{sub 2}. Under appropriate conditions, the trapping of CO{sub 2} in mineral phases could equal or exceed the amount of CO{sub 2} sequestered in the pore fluids in deep aquifers. Core samples from the Springerville-St. Johns CO{sub 2} field has allowed investigation of naturally occurring mineral reactions. The presence of travertine deposits over the field provide evidence of the leakage of CO{sub 2} to the atmosphere and justify further study. During reporting period covered here (January 1 to March 30, 2003), the main achievements were: (1) Preparation of three papers to be presented at the Second Annual Conference on Carbon Sequestion (May 5-8, Alexandria, Virginia) and (2) Preparation of two papers for submission to a special volume of Chemical Geology on CO{sub 2} Sequestration.
Date: January 30, 2003
Creator: Allis, R. G.; Moore, J. & White, S.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen