Search Results

open access

An Alternative Host Matrix Based on Iron Phosphate Glasses for the Vitrification of Specialized Waste Forms

Description: As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms.
Date: December 31, 2000
Creator: Day, Delbert D.
Partner: UNT Libraries Government Documents Department
open access

Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report

Description: The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset are amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite …
Date: December 31, 2000
Creator: Prinja, Anil K.
Partner: UNT Libraries Government Documents Department
open access

Aqueous Electrochemical Mechanisms in Actinide Residue Processing

Description: Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclear Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide …
Date: December 31, 2000
Creator: Morris, David E.; Burns, Carol J.; Smith, Wayne H. & Blanchard
Partner: UNT Libraries Government Documents Department
open access

Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

Description: Part 3 (Petroleum System Modeling of the Jurassic Smackover Formation) objectives are to provide an analysis of the Smackover petroleum system in Years 4 and 5 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work Accomplished (Year 5): Task 1 - Basin Flow - Basin flow modeling has been completed and the modeling results are being interpreted for report writing (Table 1). Task 2 - Petroleum Source Rocks - Work on the characterization of Smackover petroleum source rocks has been integrated into the basin flow model. Task 3 - Petroleum Reservoirs - Work on the characterization of Smackover petroleum reservoirs continues. The cores to be described have been identified and many of the cores for the eastern part of the basin have been described. Task 4 - Reservoir Diagenesis - Work on reservoir diagenesis has been initiated. Samples from the cores selected for the reservoir characterization are being used for this task. Work Planned (Year 5): Task 1 - Basin Flow - The report on basin flow will be completed. Task 2 - Petroleum Source Rocks - Petroleum source rock data will be reviewed in light of the basin flow model results. Task 3 - Petroleum Reservoirs - Characterization of petroleum reservoirs will continue through core studies. Task 4 - Reservoir Diagenesis - Characterization of reservoir diagenesis will continue through petrographic analysis.
Date: December 31, 2000
Creator: Mancini, Ernest
Partner: UNT Libraries Government Documents Department
open access

Bioavailability Of Organic Solvents In Soils: Input Into Biologically Based Dose-Response Models for Human Risk Assessments

Description: The purpose of this study is to determine the bioavailability of organic solvents following dermal exposures to contaminated soil and water. Breath analysis is being used to obtain real-time measurements of volatile organics in expired air following exposure in rats and humans. Rhesus monkeys were used as surrogates for humans in benzene exposures. The exhaled breath data was analyzed using physiologically based pharmacokinetic (PBPK) models to determine the dermal bioavailability of organic solvents under realistic exposure conditions. The end product of this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing PBPK models to comprehensively evaluate and compare exposures to organic compounds from either contaminated soil or water.
Date: December 31, 2000
Creator: Wester, Ronald C.
Partner: UNT Libraries Government Documents Department
open access

BIOFILTRATION OF VOLATILE POLLUTANTS: Fundamental Mechanisms for Improved Design, Long-term Operation, Prediction, and Implementation

Description: Biofiltration systems can be used for treatment of volatile organic compounds (VOCs); however, the systems are poorly understood and are normally operated as ''black boxes''. Common operational problems associated with biofilters include fouling, deactivation, and overgrowth, all of which make them ineffective for continuous, long-term use. The objective of this investigation was to develop generic methods for long-term stable operation, in particular by using selective limitation of supplemental nutrients while maintaining high activity. As part of this effort, we have provided a deeper fundamental understanding of the important biological and transport mechanisms in biodestruction of sparingly soluble VOCs and have extended this approach and mathematical models to additional systems of high priority EM relevance--direct degradation and cometabolic degradation of priority pollutants such as BTEX and chlorinated organics. Innovative aspects of this project included development of a user-friendly two-dimensional predictive model/program for MS Windows 95/98/2000 to elucidate mass transfer and kinetic limitations in these systems, isolation of a unique microorganism capable of using sparingly soluble organic and chloroorganic VOCs as its sole carbon and energy source, and making long-term growth possible by successfully decoupling growth and degradation metabolisms in operating trickle bed bioreactors.
Date: December 31, 2000
Creator: Davison,Brian H.
Partner: UNT Libraries Government Documents Department
open access

Characterization of Chemically Modified Enzymes for Bioremediation Reactions

Description: Remediation processes frequently involve species possessing limited solubility in water. For this project, we were interested in novel strategies using molecularly modified enzymes with enhanced activity and stability for remediation of recalcitrant compounds in organic solvents. Performance of naturally occurring enzymes is usually quite limited in such organic environments. The primary objective of the work was to gain a fundamental understanding of the molecular and catalytic properties of enzymes that have been chemically modified so that they are catalytically active and chemically stable in organic solvents. The premise was that stabilized and activated enzymes, which can function under harsh chemical conditions, are optimally suited for bioremediation in nonaqueous media where substrates of interest are more soluble and processed with greater efficiency. This unique strategy was examined with respect to the degradation of chlorophenols and PCBs.
Date: December 31, 2000
Creator: Davison, Brian H.
Partner: UNT Libraries Government Documents Department
open access

Design and Development of A New Hybrid Spectroelectrochemical Sensor

Description: The general aim of this project is to design and implement a new sensor technology that offers the unprecedented levels of specificity needed for analysis of the complex chemical mixtures found at USDOE sites nationwide. The new sensor concept combines the elements of electrochemistry, spectroscopy and selective partitioning into a single device that provides three levels of selectivity. We have had three major goals: Demonstration of the general sensor concept on seven model systems; Development of a prototype sensor for ferrocyanide with associated instrumentation; and Testing prototype sensor for ferrocyanide on waste tank simulant (U-Plant-2 Simulant Solution) provided by PNNL and then on actual tank waste (Tank 241-C-112) at PNNL/Hanford
Date: December 31, 2000
Creator: Heineman, William R.; Seliskar, Carl J. & Ridgway, Thomas
Partner: UNT Libraries Government Documents Department
open access

DETERMINING SIGNIFICANT ENDPOINTS FOR ECOLOGICAL RISK ANALYS ES

Description: Our interest is in obtaining a scientifically defensible endpoint for measuring ecological risks to populations exposed to chronic, low-level radiation, and radiation with concomitant exposure to chemicals. To do so, we believe that we must understand the extent to which molecular damage is detrimental at the individual and population levels of biological organization. Ecological risk analyses based on molecular damage, without an understanding of the impacts to higher levels of biological organization, could cause cleanup strategies on DOE sites to be overly conservative and unnecessarily expensive. Our goal is to determine the relevancy of sublethal cellular damage to the performance of individuals and populations. We think that we can achieve this by using novel biological dosimeters in controlled, manipulative dose/effects experiments, and by coupling changes in metabolic rates and energy allocation patterns to meaningful population response variables (such as age-specific survivorship, reproductive output, age at maturity and longevity).
Date: December 31, 2000
Creator: Hinton, Thomas G.
Partner: UNT Libraries Government Documents Department
open access

Engineering Development of Coal-Fired High Performance Power Systems

Description: This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47% NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input all solid wastes benign cost of electricity {le}{le} 90% of present plants Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. Phase II, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase III. As part of a descoping initiative, the Phase III program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase II Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4, and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.2 HITAF Air Heaters
Date: December 31, 2000
Partner: UNT Libraries Government Documents Department
open access

Engineering Development of Coal-Fired High-Performance Power Systems Progress Report: October-December 2000

Description: A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately. This report addresses the areas of technical progress for this quarter. The detail of syngas cooler design is given in this report. The final construction work of the CFB pyrolyzer pilot plant has started during this quarter. No experimental testing was performed during this quarter. The proposed test matrix for the future CFB pyrolyzer tests is given in this report. Besides testing various fuels, bed temperature will be the primary test parameter.
Date: December 31, 2000
Creator: Tsuo, York
Partner: UNT Libraries Government Documents Department
open access

Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology Quarterly Technical Progress Report: Number 23

Description: The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.
Date: December 31, 2000
Creator: Toseland, Bernard A.
Partner: UNT Libraries Government Documents Department
open access

Final technical report [Molecular genetic analysis of biophotolytic hydrogen production in green algae]

Description: The principal objective of this project was to identify genes necessary for biophotolytic hydrogen production in green algae, using Chlamydomonas reinhardtii as an experimental organism. The main strategy was to isolate mutants that are selectively deficient in hydrogen production and to genetically map, physically isolate, and ultimately sequence the affected genes.
Date: December 31, 2000
Creator: Mets, Laurens
Partner: UNT Libraries Government Documents Department
open access

Genetic Analysis of Stress Responses in Soil Bacteria for Enhanced Bioremediation of Mixed Contaminants

Description: In order to realize the full potential of bioremediation, an understanding of microbial community and individual bacterial responses to the stresses encountered at contaminated sites is needed. Knowledge about genetic responses of soil and subsurface bacteria to environmental stresses, which include low nutrients, low oxygen, and mixed pollutants, will allow extrapolation of basic principles to field applications, either using indigenous bacteria or genetically engineered microorganisms. Defining bacterial responses to those stresses presents an opportunity for improving bioremediation strategies, both with indigenous populations and genetically-engineered microbes, and should contribute to environmental management and restoration actions that would reduce the cost and time required to achieve OEM's clean up goals. Stress-inducible genes identified in this project can be used as molecular probes for monitoring performance of indigenous bacteria as well as the effectiveness of bioremediation strategies being employed. Knowledge of survival and catabolic plasmid stability of indigenous bacteria will be needed for devising the most effective bioremediation strategy. In addition, stress-inducible regulatory elements identified in this project will be useful for creating genetically-engineered microorganisms which are able to degrade hazardous wastes under stress conditions at contaminated sites. One of the model organisms, Deinococcus radiodurans, is a stress-resistant bacterium. Thus, in addition to serving as a model for gene regulation in Gram-positive organisms, it may have specific application at aerobic DOE sites where combinations of contaminants produce a particularly stressful environment. Similarly, the use of Sphingomonas F199, isolated from a depth of 407 m at the Savannah River site (Fredrickson et al., 1991), may have relevance to deep subsurface bioremediation applications, where indigenous or engineered microorganisms adapted to the that environment are needed. In addition, F199 contains aromatic oxygenases that are relevant to degradation of contaminants at that site and is representative of a large class of similar organisms from Savannah River Identification …
Date: December 31, 2000
Creator: Wong, Kwong-Kwok
Partner: UNT Libraries Government Documents Department
open access

High Frequency Electromagnetic Impedance Measurements For Characterization, Monitoring And Verification Efforts

Description: Electromagnetic methods in exploration geophysics include many technologies capable of imaging the subsurface. The electromagnetic geophysical spectrum for shallow subsurface imaging is roughly 1 Hz to 500 MHz, with electrical resistivity and other geometric sounding methods located at the low frequency end and the familiar GPR method at the high end of the spectrum. Baseline studies (Pellerin et al., 1997) show that electromagnetic instrumentation in the mid- and low-frequencies (< 300 kHz) and GPR systems (> 30 MHz) are well developed in the commercial sector. In the high-frequency range of 300 kHz to 100 MHz developments have been quite recent and reside within the research community. Accurate theoretical numerical modeling algorithms are available for simulations and interpretation across the entire spectrum (Mackie and Madden, 1993; Pellerin et al., 1995; Pellerin et al., 1997; Alumbaugh and Newman, 1995; Lee et al., 1995, Newmann and Alumbaugh, 1997; Newmann, 1999; Sasaki, 1999, etc.), but instrumentation suitable for collecting calibrated field data in the important high-frequency range is critically lacking. Several attempts to develop reliable, accurate and calibrated instruments (Sternberg and Poulton, 1996; Stewart et al., 1994; Wright et el., 1996) have produced mixed results. We proposed to exploit the concept of electromagnetic impedance, the ratio of orthogonal horizontal electric to horizontal magnetic fields, to provide the necessary technology in the high-frequency band described above. The effective depth of investigation for surface impedance measurements depends on the frequency, and is commonly expressed in terms of the skin depth, the distance into the conductive half space at which the amplitude of the incoming wave has decreased to e-1 of its surface value. In order to achieve skin depths between 0.5 and 10 meters in material of resistivity between 1 and 100 ohm-m and relative permittivity between 1 and 30, frequencies bet ween about 300 kHz …
Date: December 31, 2000
Creator: Lee, Ki Ha & Becker, Alex
Partner: UNT Libraries Government Documents Department
open access

High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs Quarterly Report

Description: Gas injection in oil reservoirs offers huge potential for improved oil recovery. However, successful design of a gas injection process requires a detailed understanding of a variety of different significant processes, including the phase behavior of multicomponent mixtures and the approach to multi-contact miscibility in the reservoir, the flow of oil, water and gas underground, and the interaction of phase behavior reservoir heterogeneity and gravity on overall performance at the field scale. This project attempts to tackle all these issues using a combination of theoretical, numerical and laboratory studies of gas injection. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) Theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of the development of a CT scanning technique which can measure compositions in a two-phase, three-component system in-situ.
Date: December 31, 2000
Creator: Hewett, Thomas A. & Orr, Franklin M., Jr.
Partner: UNT Libraries Government Documents Department
open access

A Hybrid Hydrologic-Geophysical Inverse Technique For The Assessment And Monitoring Of Leachates In The Vadose Zone

Description: At many DOE facilities, the presence of radioactive wastes and other contaminants within the vadose zone poses a serious and ongoing threat to public health and safety. In many cases these contaminants have been introduced directly to the vadose zone through releases on the surface or in shallow pits, and through leaking storage facilities. To reduce the environmental risks these wastes pose, the DOE is currently considering two fundamentally different approaches. The first involves remediation by treating contaminants in-place while the second, and more economically feasible being examined by DOE, involves in-situ immobilization of the wastes. Immobilization would be achieved through both injection of subsurface grout barriers to block transport pathways and installation of surface caps to prevent additional water infiltration into contaminated formations. A necessary requirement of both remediation approaches is the need to obtain information on the spatial distributions of the hydraulic and transport properties, the amount of contamination in place, and flow and transport processes that are occurring. With this information in hand, informed decisions can be made in order to optimize the remediation process for each particular case. In particular, these capabilities could result in reduced remediation costs, as well as providing necessary data to illustrate regulatory compliance. To reach these goals, existing monitoring technologies need to be improved and innovative technologies need to be developed to measure the spatial distribution of, and the temporal changes in moisture contents and contaminant concentrations within the vadose zone. The primary objective of the funded research addressed these needs through the development and field-testing of a Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT). The resulting technology provides the ability to both monitor the evolution of certain types of contaminant plumes, and to characterize hydrologic properties within the vadose zone at contaminated sites. The HHGIT combines geophysical measurements such as electrical resistivity …
Date: December 31, 2000
Creator: Alumbaugh, David L.
Partner: UNT Libraries Government Documents Department
open access

Improved Analytical Characterization of Solid Waste-Forms by Fundamental Development of Laser Ablation Technology

Description: Laser ablation (LA) with inductively coupled plasma mass spectrometry (ICP-MS) has been demonstrated as a viable technology for sample characterization within the EM complex. Laser ablation systems have been set up at the Hanford Site, Savannah River Plant, the Pu immobilization program (MD), Los Alamos, and at numerous other DOE facilities. Characterization of elemental and isotopic chemical constituents is an important function in support of tank-waste operation and remediation functions. Proper waste characterization enables safe operation of the tank farms, resolution of tank safety questions, and development of processes and equipment for retrieval, pretreatment, and immobilization of tank waste. All of these operations are dependent on the chemical analysis of tank waste (1). A specified need by the Tanks Focus Area (TFA) is to validate the laser ablation mass spectrometer (LA/MS) technology through round robin testing of standard materials and through fundamental studies of the laser ablation process (2). Advancement of the laser ablation technology is warranted to guarantee accuracy of analysis for the diversity of complex EM samples. This EMSP research endeavored to understand fundamental laser-ablation and ICP-MS detection characteristics, to ensure accurate and sensitive analytical characterization for EM wastesite samples. The difficulty in characterization of EM waste samples is that matrix-matched standards are not available. ICP-MS instrumental calibration must be performed with a series of standards. The sample-matrix will influence the ablation process, such as an amount of ablated mass, elemental fractionation, particle size distribution and particle transport characteristics, and ICP-MS response. If matrix-matched standards existed, the quantity of mass, degree of fractionation, and particle transport would be the same for standards and samples; hence, accuracy of analysis would be guaranteed. In contrast, for most EM samples in which standards are not available, accuracy can only be accomplished through knowledge of the laser ablation processes. Laser ablation offers …
Date: December 31, 2000
Creator: Russo, Richard E.
Partner: UNT Libraries Government Documents Department
open access

Internet: An Overview of Key Technology Policy Issues Affecting Its Use and Growth

Description: The growth of the Internet may be affected by issues being debated by Congress. This report summarizes several key technology policy issues that were under consideration by the 106th Congress.
Date: December 31, 2000
Creator: Smith, Marcia S.; Nunno, Richard M.; Moteff, John D. & Kruger, Lennard G.
Partner: UNT Libraries Government Documents Department
open access

King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina

Description: The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined tools of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.
Date: December 31, 2000
Creator: Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.; Southard, John A. & Thom, Ronald M.
Partner: UNT Libraries Government Documents Department
open access

Laboratory Directed Research and Development Annual Report to the Department of Energy - December 2000.

Description: The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer review, and portfolio's relatedness to BNL's mission, …
Date: December 31, 2000
Creator: Fox, K. J.
Partner: UNT Libraries Government Documents Department
open access

Long-Term Risk From Actinides In The Environment: Modes Of Mobility

Description: The mobility of actinides in surface soils remains a key issue of concern at several DOE facilities in arid and semiarid environments, including Rocky Flats, Hanford, Nevada, Idaho, and Los Alamos. Over the last 50 years, nuclear research and development programs have resulted in releases of plutonium to both on-site and off-site locations. Most of this plutonium and other actinides are currently in soils where it is tightly bound to soil particles (Watters et al. 1983), but these particles themselves are subject to redistribution. Research indicates that actinide redistribution is driven primarily by physical and biological processes associated with ecosystem dynamics, rather than by chemical processes. Actinide mobility is a high visibility issue at Rocky Flats and Hanford due to pending litigation and clean-up decisions. The potential for redistribution has lead plaintiff groups to sue the DOE and its contractors at Rocky Flats and Hanford by claiming that past releases of plutonium have occurred and that these releases have exposed off-site human populations to large amounts of plutonium with consequent negative health risks to humans (Goble 1996). Plaintiffs also claim that these exposures will continue to occur because of chronic releases from contaminated soil from on-site sources (Goble 1996, Smallwood 1996a, b). The concern about past and potential releases of contaminants from Rocky Flats appears to have reduced property values in nearby communities (Flynn et al. 1998). In addition, public groups focusing on past and potential off-site transport from Rocky Flats are expressing concern about increased erosion-driven transport associated with disturbances such as fire. A central issue in arguing these cases has been whether the plutonium presently in soils is immobile (Litaor et al 1996) or whether it is subject to transport by biological, physical, or chemical processes. Plaintiffs claim that wind erosion of soil is producing in large chronic …
Date: December 31, 2000
Creator: Breshears, David D.
Partner: UNT Libraries Government Documents Department
open access

Microbial genomes: Blueprints for life

Description: Complete microbial genome sequences hold the promise of profound new insights into microbial pathogenesis, evolution, diagnostics, and therapeutics. From these insights will come a new foundation for understanding the evolution of single-celled life, as well as the evolution of more complex life forms. This report is an in-depth analysis of scientific issues that provides recommendations and will be widely disseminated to the scientific community, federal agencies, industry and the public.
Date: December 31, 2000
Creator: Relman, David A. & Strauss, Evelyn
Partner: UNT Libraries Government Documents Department
Back to Top of Screen