Search Results

Fiscal Year 1998 report theoretical studies of ground energy coupling

Description: A method for calculating the redistribution of resonance radiation in hot, dense plasmas is developed by extending the Frequency Fluctuation Model (FFM). This paper is devoted to a brief review of lineshape theory in the linear response approximation, and an introduction to the FFM approach to the modeling of lineshapes in plasmas. This discussion begins with a consideration of the spectral lines emitted by complex ions in plasmas. As is well known, the lineshape is determined by the time- dependent coupling of the ion with the plasma environment. This plasma-emitter interaction, leads to Stark broadening of the spectral lines, and traditionally has been considered in the approximation which treats the ef&@ of the electrons on the emitting ion in the impact limit while the ionic perturbation is� taken to be quasi-static. In this approximation, the time dependence of the perturbation has been eliminated, resulting in a spectral line shape that has purely homogeneous and inhomogeneous contributions and that is described by a simple sum of independent electron imp� act broadened static components. In order to clarify the concepts presented, examples of radiative redistribution functions for simple cases are presented. Included is an example of an X-ray laser pumped system which illustrates the capability of the mpdel to provide a sensitive method for the study of radiative transfer under plasma conditions of partial redistribution. That is, in cases where the strong mixing limit is not attained so that the mixing of the inhomogeneous spectral line components is not fast enough to produce a completely redistributed line.
Date: December 10, 1998
Creator: Klein, L.
Partner: UNT Libraries Government Documents Department

Enhanced surveillance program annual report FY98. Dynamic behavior of Pu and U (intermediate strain rates) -- LA12

Description: The Kolsky-Hopkinson Bar Dynamic Test Facility in Building PF-4 at TA-55 recently became operational and the first series of plutonium samples from a baseline alloy were successfully tested on December 8, 1997 through the dedicated efforts of a large number of people in groups NMT-9, NMT-11, MST-8, NMT-5, and JCI. The Enhanced Surveillance Program provided the necessary support for this achievement. The Kolsky-Hopkinson bar is an instrument designed to measure the uniaxial compression stress-strain characteristics of special nuclear materials (SNM) in a glovebox environment at intermediate strain rates (typically 500 s{sup {minus}1} to 10,000 s{sup {minus}1}), over a wide temperature range (cryogenic up to near-melting temperatures), and up to strains of about 50% per test. Due to radiation contamination hazards, SNM samples are contained within a specially designed glovebox with only a small portion of the bar system. The uniaxial high-strain-rate deformation behavior of SNM materials is revealed by stress-strain-strain rate curves calculated from strain signals acquired by gauges on the pressure bars. The compressive stress-strain mechanical behavior of a range of weapons-relevant SNM materials (both baseline and stockpile-aged plutonium and enriched uranium), measured over a wide range of strain rates and temperatures, is necessary to support the development of predictive constitutive models and allows assessment of the mechanical response of SNM as a function of age, processing, and composition. Accurate constitutive material models are essential for simulating the high-rate deformation response of weapon materials. Most FY98 milestones and deliverables were successfully met or were partially completed on schedule. In the case of enriched uranium, testing began six months ahead of schedule. Upgrading the testing temperature capability took six months more than originally planned as a result of the highly formalized and rigorous design change plan (DCP) requirements at TA-55. Specimen availability continues to be a bottle-neck due to over-subscribed ...
Date: December 31, 1998
Creator: Blumenthal, W.R.
Partner: UNT Libraries Government Documents Department

FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

Description: Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils & solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through September 1998, and therefore represents a final report for fiscal year 1998 activities.
Date: November 1, 1998
Creator: Adamson, M G; Hipple, D L; Hopper, R W & Hsu, P C
Partner: UNT Libraries Government Documents Department

Calculation of Quad-Cities Central Bundle Documented by the U.S. in FY98 Using Russian Computer Codes

Description: The report presents calculation results of isotopic composition of irradiated fuel performed for the Quad Cities-1 reactor bundle with UO{sub 2} and MOX fuel. The MCU-REA code was used for calculations. The code is developed in Kurchatov Institute, Russia. The MCU-REA results are compared with the experimental data and HELIOS code results.
Date: June 19, 2001
Creator: Pavlovichev, A.M.
Partner: UNT Libraries Government Documents Department

Integrated computer control system CORBA-based simulator FY98 LDRD project final summary report

Description: The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control architecture. The simulator project used a three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. This summary report highlights the findings of the team and provides the architectural context of the study. For the last several years LLNL has been developing the Integrated Computer Control System (ICCS), which is an abstract object-oriented software framework for constructing distributed systems. The framework is capable of implementing large event-driven control systems for mission-critical facilities such as the National Ignition Facility (NIF). Tools developed in this project were applied to the NIF example architecture in order to gain experience with a complex system and derive immediate benefits from this LDRD. The ICCS integrates data acquisition and control hardware with a supervisory system, and reduces the amount of new coding and testing necessary by providing prebuilt components that can be reused and extended to accommodate specific additional requirements. The framework integrates control point hardware with a supervisory system by providing the services needed for distributed control such as database persistence, system start-up and configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. The design is interoperable among computers of different kinds and provides plug-in software connections by leveraging a common object request brokering architecture (CORBA) to transparently distribute software objects across the network of computers. Because object broker distribution applied to control systems is relatively new and its inherent performance is roughly threefold less than traditional point-to-point communications, CORBA presented a certain risk to designers. This LDRD thus evaluated CORBA to determine its performance and scaling properties and to optimize its use within the ICCS. ...
Date: January 15, 1999
Creator: Bryant, R M; Holloway, F W & Van Arsdall, P J
Partner: UNT Libraries Government Documents Department

Functional design criteria for FY 1993-2000 groundwater monitoring wells

Description: The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement.
Date: January 1, 1996
Creator: Williams, B.A.
Partner: UNT Libraries Government Documents Department

SRTC Input to DOE-HQ R and D Database for FY98

Description: IDWP is a software application that was developed to identify the groundwater monitoring wells at SRS that require containerization and treatment for purge water generated during sampling. Created by the Statistical Consulting Section of SRTC, IDWP is a SAS application that retrieves the necessary data for wells selected by the user from the Site's extensive groundwater database on a remote machine. The program then applies an algorithm, derived by the Environmental Protection Department from the SRS Investigation-Derived Waste (IDW) Management Plan, to the analytical results to determine whether containerization is required for the specified wells. IDWP produces output files that designate the containerization status of each of the selected wells, provide statistics to support the treatment facilities' permits, and assist with controlling and scheduling the handling of the managed purge water. The SRS Aqueous IDW Administrator in the Environmental Restoration Division (ERD) uses IDWP in conjunction with knowledge of new wells to produce quarterly reports that specify which groundwater monitoring wells require purge water containerization for each treatment facility. Special reports supply other groundwater information of interest to ERD, such as analytical concentration plots and groundwater data gathering. Benefits include the timely generation of containerization lists for each treatment facility; the automatic retrieval of, and complex calculations for, extremely large amounts of data, ensuring consistent, accurate, and current containerization lists; and features such as a user-friendly interface, availability through computer networks, access for simultaneous multiple users, and independence from any particular person. The scope of IDWP continually expands to accommodate changes to the IDW Management Plan and to satisfy additional needs as they are identified, including the development of an Intranet interface for FY99.
Date: November 18, 1998
Creator: Chandler, L.R. Jr.
Partner: UNT Libraries Government Documents Department

Superconductivity for electric systems program plan, FY 1996--FY 2000

Description: This describes a comprehensive, integrated approach for the development of HTS (high-temperature superconductivity) technology for cost-effective use in electric power applications. This approach supports the program`s mission: to develop the technology that could lead to industrial commercialization of HTS electric power applications, such as fault-current limiters, motors, generators, transmission cables, superinductors, and superconducting energy storage. The vision is that, by 2010, the US power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition; and in US, the power grid will gain increased efficiency and stability by incorporating many kinds of HTS devices. After an overview and a discussion of the program plan (wires, systems technology, partnership initiative), this document discusses technology status, stakeholders, and the role of US DOE.
Date: March 1, 1996
Partner: UNT Libraries Government Documents Department

Fiscal year 1998 memorandum of understanding for the TWRS characterization project

Description: During fiscal year 1998, the level of success achieved by the Tank Waste Remediation System (TWRS) shall be determined by specific performance measures. These measures take the form of significant deliverables, one of which is the completion of Tank Characterization Reports (TCRs). In order to achieve success regarding the TCR performance deliverable, multiple organizations across TWRS must work together. Therefore, the requirements and expectations needed from each of these TWRS organizations were examined in order to gain an understanding of the performance necessary from each organization to achieve the end deliverable. This memorandum of understanding (MOU) documents the results of this review and establishes the performance criteria by which TWRS will assess its progress and success. These criteria have been determined based upon a TWRS Characterization Project budget of $47.5 million for fiscal year 1998; if this budget is changed or the currently identified work scope is modified, this MOU will need to be revised accordingly. This MOU is subdivided into six sections, where sections three through six each identify individual interfaces between TWRS organizations. The specific performance criteria related to each TWRS organizational interface are then delineated in the section, along with any additional goals or issues pertaining to that interface.
Date: March 24, 1998
Creator: Schreiber, R. D.
Partner: UNT Libraries Government Documents Department

FY 1998 waste information requirements document

Description: The Waste Information Requirements Document describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project that provide characterization information on Hanford Site waste tanks. The characterization information is required to perform operations and meet the commitments of TWRS end users. These commitments are derived from the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement; the Recommendation 93-5 Implementation Plan to the Defense Nuclear Facilities Safety Board (DNFSB); and other directives as listed in Section 4.0. This Waste Information Requirement Document applies to Fiscal Years 1997 and 1998 activities. Its contents are based on the best information available in August 1997. The format and content are based on the directions of DOE-RL (Sieracki, 1997) and Fluor Daniel Hanford Incorporated (Umek, 1997). Activities, such as the revision of the Tank Characterization Technical Sampling Basis (Brown et al. 1997), the revision of the data quality objectives (DQOs), issue closures, discussions with Ecology, and management decisions may cause subsequent updates to the Waste Information Requirements Document.
Date: September 5, 1997
Creator: Poppiti, J.A.
Partner: UNT Libraries Government Documents Department

Oxidative alkaline dissolution of chromium from Hanford tank sludges: Results of FY 98 studies

Description: Plans for disposing of the high-level radioactive wastes at the Hanford Site call for retrieving, pretreating, and finally immobilizing the wastes in a glass matrix. Since the cost for vitrifying and disposing of high-level wastes will be very great, pretreatment processes are being developed to reduce their volume. The baseline method for pretreating Hanford tank sludges is caustic leaching. Earlier studies with Hanford tank-sludge simulants and with actual Hanford tank sludges have indicated that treating water-washed and caustic-leached solids with oxidants can significantly increase the removal of Cr. Permanganate and ozone have been shown to be generally the most rapid and effective chemical agents for this purpose. The work described in this report continues to examine the effectiveness of solubilizing additional Cr from Hanford tank wastes by oxidation of the water-insoluble solids from tanks U-108, U-109, and SX-108 under alkaline conditions. The current study confirms that permanganate is highly effective at removing chromium from water solids under alkaline conditions, with Cr removals of up to 99+%. Elemental oxygen can also be highly effective, with removals up to 97+%.
Date: August 1, 1998
Creator: Rapko, B.M.
Partner: UNT Libraries Government Documents Department

Waste management fiscal year 1998 progress report

Description: The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.
Date: December 31, 1998
Partner: UNT Libraries Government Documents Department

Oil program implementation plan FY 1996--2000

Description: This document reaffirms the US Department of Energy (DOE) Office of Fossil Energy commitment to implement the National Oil Research Program in a way to maximize assurance of energy security, economic growth, environmental protection, jobs, improved economic competitiveness, and improved US balance of trade. There are two sections and an appendix in this document. Section 1 is background information that guided its formulation and a summary of the Oil Program Implementation Plan. This summary includes mission statements, major program drivers, oil issues and trends, budget issues, customers/stakeholders, technology transfer, measures of program effectiveness, and benefits. Section 2 contains more detailed program descriptions for the eight technical areas and the NIPER infrastructure. The eight technical areas are reservoir characterization; extraction research; exploration, drilling, and risk-based decision management; analysis and planning; technology transfer; field demonstration projects; oil downstream operations; and environmental research. Each description contains an overview of the program, descriptions on main areas, a discussion of stakeholders, impacts, planned budget projections, projected schedules with Gantt charts, and measures of effectiveness. The appendix is a summary of comments from industry on an earlier draft of the plan. Although changes were made in response to the comments, many of the suggestions will be used as guidance for the FY 1997--2001 plan.
Date: April 1, 1995
Partner: UNT Libraries Government Documents Department

Tanks focus area multiyear program plan FY97-FY99

Description: The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.
Date: August 1, 1996
Partner: UNT Libraries Government Documents Department

Institutional Plan, FY 1995--2000

Description: Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.
Date: October 1, 1994
Partner: UNT Libraries Government Documents Department

Electrical resistivity monitoring of the single heater test in Yucca Mountain FY98 -- 1st quarter results

Description: Of the several thermal, mechanical and hydrological measurements being used to monitor the rockmass response in the Single Heater Test, electrical resistance tomography (ERT) is being used to monitor the movement of liquid water with a special interest in the movement of condensate out of the system. Images of resistivity change were calculated using data collected before, during and after the heating episode. This report will concentrate on the results obtained after heating ceased; previous reports discuss the results obtained during the heating phase. The changes recovered show a region of increasing resistivity approximately centered around the heater as the rock mass cooled. The size of this region grows with time and the resistivity increases become stronger. The increases in resistivity are caused by both temperature and saturation changes. The Waxman Smits model has been used to calculate rock saturation after accounting for temperature effects. The saturation estimates suggest that during the heating phase, a region of drying forms around the heater. During the cooling phase, the dry region has remained relatively stable. Wetter rock regions which developed below the heater during the heating phase, are slowly becoming smaller in size during the cooling phase. The last set of images indicate that some rewetting of the dry zone may be occurring. The accuracy of the saturation estimates depends on several factors that are only partly understood.
Date: January 13, 1997
Creator: Daily, A. R. W.
Partner: UNT Libraries Government Documents Department

U.S. Department of Energy fiscal year 1998 accountability report

Description: This report, the Department of Energy`s first Accountability Report, is part of an effort to better measure how the Department of Energy is serving the American taxpayers; the results achieved; and the cost-effectiveness of the work. By integrating the Department`s FY 1998 performance results, financial status, and management controls, this report is a useful tool and provides a status report on the Department`s performance in FY 1998. It presents a clearer picture of the return on the investment of the resources entrusted to this agency. After thorough review by the Office of the Inspector General, with one exception, the financial statements have been found to present fairly the financial position of the Department in conformity with Federal accounting standards. Overall, the Department has reasonable assurance that DOE has management controls in place to ensure that operational activities are efficient and effective and comply with the law. Ten challenges where management controls can be strengthened have been identified.
Date: February 1, 1999
Partner: UNT Libraries Government Documents Department

FY98 Status Report on the HSV

Description: The HSV in storage in MTF has been monitored during FY98, and its overpressure has been sampled and analyzed.
Date: March 25, 1999
Creator: Shanahan, K. L.
Partner: UNT Libraries Government Documents Department

TFA Tank Focus Area - multiyear program plan FY98-FY00

Description: The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).
Date: September 1, 1997
Partner: UNT Libraries Government Documents Department

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

Description: The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F. & Palethorpe, S.J.
Partner: UNT Libraries Government Documents Department

Energy Storage Systems Program Report for FY98

Description: Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.
Date: April 1, 1999
Creator: Butler, P.C.
Partner: UNT Libraries Government Documents Department

2020 Vision Project Summary, FY98

Description: The 2020 Vision project began in 1996 with two participating teachers and four classes. It has since grown to comprise more than a dozen participating teachers and hundreds of students across the country. Much of this growth took place in FY98, thanks to the accomplishment of several major goals: implementation of a mentor program, enhanced teacher training, a mid-year conference for students, recruitment of distant schools, and the development of an interactive Web site. The first part of this report describes these accomplishments, as well as future directions for 2020 Vision. The second part summarized the scenarios students wrote during the 1997-98 school year. it identifies recurrent themes in the students' scenarios and compares/contrasts them with scenarios written in the first two years of the project.
Date: November 1, 1998
Creator: Munoz, A.; Clausen, J. C.; Scott, K. P. & Gordon, K. W.
Partner: UNT Libraries Government Documents Department

Neutron logging measurements in the single heater test first quarter, FY98

Description: The purpose of the Single Heater Test (SHT), the design of the test, and the borehole layout were reported by OCRWM M&O (1996a). Briefly, the main purpose of the SHT is to study the thermal- mechanical behavior of the densely welded non-lithophysal Topopah Spring tuff at the Exploratory Studies Facility (ESF). The SHT is also used as a shake-down for the test of the coupled thermal- mechanical- hydrological-chemical (TMHC) processes.
Date: January 16, 1998
Creator: Lin, W., LLNL
Partner: UNT Libraries Government Documents Department

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

Description: The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A.K.; McCray, J.A.; Rogers, A.Z.; Simmons, R.F. & Palethrope, S.J.
Partner: UNT Libraries Government Documents Department