35 Matching Results

Search Results

Energia Renovable para Centros de Salud Rurales (Renewable Energy for Rural Health Clinics)

Description: Esta es la primera de una serie de guias de aplicaciones que el Programa de Energia de Villas de NREL esta comisionando para acoplar sistemas comerciales renovables con aplicaciones rurales, incluyendo agua, escuelas rurales y micro empresas. La guia esta complementada por las actividades de desarrollo del Programa de Energia de Villas de NREL, proyectos pilotos internacionales y programas de visitas profesionales.
Date: July 28, 1999
Creator: Jimenez, T. & Olson, K.
Partner: UNT Libraries Government Documents Department

3D finite-difference frequency-domain code for electromagnetic induction tomography

Description: The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the PhCbus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort.
Date: July 28, 1999
Creator: Berryman, J G; Champagne II, N J & Buettner, H M
Partner: UNT Libraries Government Documents Department

Modeling a Dry Etch Process for Large-Area Devices

Description: There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.
Date: July 28, 1999
Creator: Buss, R.J.; Hebner, G.A.; Ruby, D.S. & Yang, P.
Partner: UNT Libraries Government Documents Department

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century

Description: Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.
Date: July 28, 1999
Creator: Atwater, Harry A.; Ciszek, Ted; Feldman, Leonard C.; Gee, James; Rohatgi, Ajeet & Sopori, Bhushan
Partner: UNT Libraries Government Documents Department

GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA

Description: The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.
Date: July 28, 1999
Creator: Winn, W. G.
Partner: UNT Libraries Government Documents Department

Photosensitive Point Defects in Optical Glasses: Science and Applications

Description: The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently found widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i. e. dispersion and magnitude of the refractive index change) and its environmental stability.
Date: July 28, 1999
Creator: Potter, B.G. Jr. & Simmons-Potter, K.
Partner: UNT Libraries Government Documents Department

Ingestion Pathway Transfer Factors for Plutonium and Americium

Description: Overall transfer factors for major ingestion pathways are derived for plutonium and americium. These transfer factors relate the radionuclide concentration in a given foodstuff to deposition on the soil. Equations describing basic relationships consistent with Regulatory Guide 1.109 are followed. Updated values and coefficients from IAEA Technical Reports Series No. 364 are used when a available. Preference is given to using factors specific to the Savannah River Site.
Date: July 28, 1999
Creator: Blanchard, A.
Partner: UNT Libraries Government Documents Department

Probabilistic Accident Consequence Uncertainty - A Joint CEC/USNRC Study

Description: The joint USNRC/CEC consequence uncertainty study was chartered after the development of two new probabilistic accident consequence codes, MACCS in the U.S. and COSYMA in Europe. Both the USNRC and CEC had a vested interest in expanding the knowledge base of the uncertainty associated with consequence modeling, and teamed up to co-sponsor a consequence uncertainty study. The information acquired from the study was expected to provide understanding of the strengths and weaknesses of current models as well as a basis for direction of future research. This paper looks at the elicitation process implemented in the joint study and discusses some of the uncertainty distributions provided by eight panels of experts from the U.S. and Europe that were convened to provide responses to the elicitation. The phenomenological areas addressed by the expert panels include atmospheric dispersion and deposition, deposited material and external doses, food chain, early health effects, late health effects and internal dosimetry.
Date: July 28, 1999
Creator: Gregory, Julie J. & Harper, Frederick T.
Partner: UNT Libraries Government Documents Department

Analysis of F-Canyon Effluents During the Dissolution Cycle with a Fourier Transform Infrared Spectrometer/Multipath Cell

Description: Air samples from F-Canyon effluents were collected at the F-Canyon stack and transported to a laboratory at the Savannah River Technology Center (SRTC) for analysis using a Fourier transform infrared spectrometer in conjunction with a multipath cell. Air samples were collected during the decladding and acid cuts of the dissolution of the irradiated aluminum-cladded slugs. The FTIR analyses of the air samples show the presence of NO2, NO, HNO2, N2O, SF6, and 85Kr during the dissolution cycle. The concentration time profiles of these effluents corresponded with expected release rates from the F-Canyon operations.
Date: July 28, 1999
Creator: Villa, E.
Partner: UNT Libraries Government Documents Department

Die Backside FIB Preparation for Identification and Characterization of Metal Voids

Description: Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.
Date: July 28, 1999
Creator: Antoniou, Nicholas; Campbell, Ann N. & Filter, William F.
Partner: UNT Libraries Government Documents Department

On the Red-Blue Set Cover Problem

Description: Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, we used FIB technology to prepare an IC for inspection of voided metal interconnects (''lines'') and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscope (SEM). Sequential cross sections of individual voided vias enabled us to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping us identify the IC process steps that needed to be changed.
Date: July 28, 1999
Creator: Carr, Robert D.; Doddi, Srinivas; Konjevod, Goran & Marathe, Madhav
Partner: UNT Libraries Government Documents Department

Subsurface Flow and Contaminant Transport Documentation and User's Guide

Description: This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.
Date: July 28, 1999
Creator: Aleman, S.E.
Partner: UNT Libraries Government Documents Department

Sanitary Landfill Supplemental Test Final Report

Description: This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill.
Date: July 28, 1999
Creator: Altman, D. J.
Partner: UNT Libraries Government Documents Department

Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors

Description: As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.
Date: July 28, 1999
Creator: Redmond, James M.; Barney, Patrick S. & Henson, Tammy D.
Partner: UNT Libraries Government Documents Department

GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra

Description: The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.
Date: July 28, 1999
Creator: Winn, W.G.
Partner: UNT Libraries Government Documents Department

Strengthening Integrality Gaps for Capacitated Network Design and Covering Problems

Description: A capacitated covering IP is an integer program of the form min{l_brace}ex{vert_bar}Ux {ge} d, 0 {le} x {le} b, x {element_of} Z{sup +}{r_brace}, where all entries of c, U, and d are nonnegative. Given such a formulation, the ratio between the optimal integer solution and the optimal solution to the linear program relaxation can be as bad as {parallel}d{parallel}{sub {proportional_to}}, even when U consists of a single row. They show that by adding additional inequalities, this ratio can be improved significantly. In the general case, they show that the improved ratio is bounded by the maximum number of non-zero coefficients in a row of U, and provide a polynomial-time approximation algorithm to achieve this bound. This improves upon the results of Bertsimas and Vohra, strengthening their extension of Hall and Hochbaum.
Date: July 28, 1999
Creator: Carr, Robert D.; Fleischer, Lisa K.; Leung, Vitus J. & Phillips, Cynthia A.
Partner: UNT Libraries Government Documents Department

A New Bound for the Ration Between the 2-Matching Problem and Its Linear Programming Relaxation

Description: Consider the 2-matching problem defined on the complete graph, with edge costs which satisfy the triangle inequality. We prove that the value of a minimum cost 2-matching is bounded above by 4/3 times the value of its linear programming relaxation, the fractional 2-matching problem. This lends credibility to a long-standing conjecture that the optimal value for the traveling salesman problem is bounded above by 4/3 times the value of its linear programming relaxation, the subtour elimination problem.
Date: July 28, 1999
Creator: Boyd, Sylvia & Carr, Robert
Partner: UNT Libraries Government Documents Department

Focused Ion Beam Induced Effects on MOS Transistor Parameters

Description: We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.
Date: July 28, 1999
Creator: Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R. et al.
Partner: UNT Libraries Government Documents Department

Design package for vacuum wand for fuel retrieval system

Description: This is a design package that contains the details for the design, fabrication, and testing of a vacuum wand that will pick up sludge and corrosion products generated during fuel assembly handling operations at K-Basin. This document contains requirements, development design information, design calculations, tests, and test reports.
Date: July 28, 1999
Creator: Roach, H. L.
Partner: UNT Libraries Government Documents Department

Consequence analysis of IWTS metal water reactions (Fauske and Associates report 99-35)

Description: The report describes the consequences of postulated thermally unstable conditions in the IWTS knock out pot. The consequence analysis shows that both the knock out pot and particulate bed will stay intact, and that releases will be minor. Reaction rate limitations prevent knock out pot pressure and/or temperature from even approaching values that would threaten structural integrity. Source term calculations based on a particle bed with a homogeneous mixture of metal and oxide particles yield a release above the K Basin pool of about 12 grams.
Date: July 28, 1999
Creator: DUNCAN, D.R.
Partner: UNT Libraries Government Documents Department