27 Matching Results

Willis Library will be without power on Tuesday, August 20, 2019 from 5:00-7:00 AM CDT. All websites and web services will be down during this period.

Search Results

Advanced search parameters have been applied.

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, February--May 1995

Description: This report describes the activities of the project team during the reporting period. The principal work has focused upon the laboratory treatment of six wastes with three by-products and the evaluation of the stability of the resulting eighteen materials. Other efforts during the third quarter have been directed toward completion of the collection and analysis of by-products, the identification of a suitable fourth by-product, and the definition of the approach to the solidification tests. The activity on the project during the third quarter of Phase One has fallen into three major areas: acquiring and analyzing by-products; treating hazardous wastes with by-products in the laboratory and analyzing the results; and conducting administrative activities, including public relations and personnel additions. The hazardous wastes that are used include industrial wastewater treatment residue from battery manufacturing plant; contaminated soil from a remediation project conducted at a munitions depot; contaminated soil from a remediation project conducted at an abandoned industrial site; contaminated soil from a remediation project conducted at a former sewage treatment plant; air pollution control dust from basic oxygen furnace steel production; and air pollution control ash from municipal waste incineration.
Date: July 1, 1995
Partner: UNT Libraries Government Documents Department

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

Description: Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.
Date: July 1, 1995
Creator: Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C. & Gaddy, J.L.
Partner: UNT Libraries Government Documents Department

Task 5.9 - use of coal ash in recycled plastics and composite materials

Description: The goal of this research project by the Energy & Environmental Research Center (EERC) was to determine the potential for coal ash to serve as a {open_quote}functional filler{close_quotes} in plastics and other composite materials, with special emphasis on recycled plastics. The term functional filler is intended to indicate that the material added to the plastic does more than take up space and extend the use of the polymer. Determining the functional filler potential of ash was not the only intent of this project, since another prime objective was to find a use for materials currently considered waste. The term functional filler also opened a door to the use of cenospheres, which are currently marketed and for which there is sufficient market demand that they do not fit the category of a waste even though they are a product of coal combustion. Cenospheres, hollow spherical ash particles, were selected because of their unique properties. Although they currently have commercial applications, the unique nature of these materials make them an excellent candidate for use as a functional filler in composites. The ability to produce a commercially viable product from waste streams and a recycled material is a positive step toward reducing solid waste. The first task, since there are numerous types of coal ash, was to select suitable ash types for use in this project. Three basic types of material were selected: fly ash, a bottom ash, and a unique form of coal ash known as cenospheres.
Date: July 1, 1995
Creator: Hassett, D.J.; Dockter, B.A.; Eylands, K.E. & Pflughoeft-Hassett, D.F.
Partner: UNT Libraries Government Documents Department

Controlled low strength materials (CLSM), reported by ACI Committee 229

Description: Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavement bases, conduit bedding, erosion control, void filling, and radioactive waste management.
Date: July 1, 1997
Creator: Rajendran, N.
Partner: UNT Libraries Government Documents Department

Land application uses for dry FGD by-products. Third quarterly report, 1995

Description: The primary purpose of this report is to create beneficial reuse standards for coal ash and clean coal technology by-products. One of the highlights of the report is the benefits of FGD by-products for agriculture. Alfalfa growth and yields have been better this year than any other year. The report provides a brief information on study of FGD benefits for neutralizing acid mine spoil or coal refuse. Chemical Speciation models were conducted to improve our understanding of the impact of FGD on soil, water and plant quality.
Date: July 1, 1997
Partner: UNT Libraries Government Documents Department

DU-AGG pilot plant design study

Description: The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule.
Date: July 1, 1996
Creator: Lessing, P.A. & Gillman, H.
Partner: UNT Libraries Government Documents Department

Sediment Decontamination Treatment Train: Commercial-Scale Demonstration for the Port of New York/New Jersey

Description: Decontamination and beneficial use of dredged material is a component of a comprehensive Dredged Material Management Plan for the Port of New York and New Jersey. The authors describe here a regional contaminated sediment decontamination program that is being implemented to meet the needs of the Port. The components of the train include: (1) dredging and preliminary physical processing (materials handling), (2) decontamination treatment, (3) beneficial use, and (4) public outreach. Several types of treatment technologies suitable for use with varying levels of sediment contamination have been selected based on the results of bench- and pilot-scale tests. This work is being conducted under the auspices of the Water Resources Development Act (WRDA). The use of sediment washing is suitable for sediments with low to moderate contamination levels, typical of industrialized waterways. BioGenesis Enterprises and Roy F. Weston, Inc. performed the first phase of an incremental decontamination demonstration with the goal of decontaminating 700 cubic yards (cy) (pilot-scale) for engineering design and cost economics information for commercial scale operations. This pilot test was completed in March, 1999. The next phase will scale-up to operation of a commercial facility capable of treating 40 cy/hr. It is anticipated that this will be completed by January 2000 (250,000 cy/yr). Manufactured topsoil is one beneficial use product from this process. Tests of two high-temperature treatment technologies are also in progress. They are well suited to produce almost complete destruction of organic compounds in moderate to highly contaminated dredged materials and for production of high-value beneficial reuse products. The Institute of Gas Technology is demonstrating a natural gas-fired thermochemical manufacturing process with an initial treatment capacity of 30,000 cy/yr into operation by the fall of 1999. Design and construction of a 100,000 cy/yr facility will be based on the operational results obtained from the demonstration facility. ...
Date: July 1, 1999
Creator: Jones, K. W.; Stern, E. A.; Donato, K. R. & Clesceri, N. L.
Partner: UNT Libraries Government Documents Department

COOPERATIVE LAND REUSE PROGRAM

Description: The objective of this study was to determine what financial return, if any, DOE would realize if they invest solely in removal of the asbestos from these three Hanford steam plants and the associated large bore distribution piping at the site. Once the asbestos was removed the strategy was to bring in companies that specialize in salvage and material re-use and have them remove, at no cost to DOE, the plants and the associated large bore piping. The salvage companies we contacted had said that if they didn't have to remove asbestos, they may be able to realize enough value from these plants to offset their demolition and/or dismantling cost. The results were not what we expected but they do offer DOE some favorable financial alternatives to their present approach. The study concluded that there was very little salvage and/or re-use value remaining in the steam plant material that could be used to offset the demolition and/or dismantling cost. The notable exception to this is the removal of the 24 inch steam piping that runs from 200E to 200W areas (see IDM executive summary under Dismantling cost). It is estimated that the re-use value of the 24-inch piping would more than pay for the dismantling cost of this piping. On a more favorable note, it does appear as though the cost of conventional demolition can be reduced by a factor of 3 to 5 if the asbestos is removed first and the demolition is performed using competitive and commercial practices. Both estimates in this study are similar except that IDM did not include floor slab removal nor remove the same quantity of piping. This is why we are using a range of 3 to 5 as a reduction factor. The IDM estimate (using union labor) for demolition after removal of ...
Date: July 30, 1999
Partner: UNT Libraries Government Documents Department

Greenhouse of the future. Final report

Description: This greenhouse of the future is located at the Center for Regenerative Studies (CRS) at Cal Poly Pomona. The building design was driven by desired environmental conditions. The primary objective was to keep the interior space warm during winter for the breeding of fish and other greenhouse activities, especially in the winter. To do this, a highly insulating envelope was needed. Straw bales provide excellent insulation with an R-value of approximately 50 and also help solve the environmental problems associated with this agricultural waste product. A summary of the construction progress, construction costs and operating costs are included.
Date: July 3, 1998
Creator: Cavin, B. III
Partner: UNT Libraries Government Documents Department

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994

Description: Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.
Date: July 1, 1997
Partner: UNT Libraries Government Documents Department

Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

Description: Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.
Date: July 1, 1997
Creator: Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C. et al.
Partner: UNT Libraries Government Documents Department

CO{sub 2} mitigation and fuel production

Description: Methanol as an alternative transportation fuel appears to be an effective intermediate agent, for reducing CO{sub 2} from the utility power and the transportation sectors. On the utilization side, methanol as a liquid fuel fits in well with the current infrastructure for storage and delivery to the automotive sector with better efficiency. On the production side, CO{sub 2} from fossil fuel plants together with natural gas and biomass can be used as feedstocks for methanol synthesis with reduced CO{sub 2}. Over the past several years, processes have emerged which have varying degrees of CO{sub 2} emission reduction depending on the feedstocks used for methanol synthesis process. This paper reviews the methanol processes from the point of view of production efficiency and CO{sub 2} emissions reduction. The processes include: (1) the Hydrocarb Process which primarily utilizes coal and natural gas and stores carbon, and (2) the Hynol Process which utilizes biomass (including carbonaceous wastes, municipal solid waste (MSW)) or coal and natural gas, and (3) the Carnol Process which utilizes natural gas and CO{sub 2} recovered from fossil fuel fired powered plant stacks, especially coal fired plants. The Carnol System consists of power generation, methanol production and methanol utilization as an automotive fuel. The efficiency and CO{sub 2} emissions for the entire system are compared to the conventional system of petroleum derived automotive fuel (gasoline) and coal fired power generation plants. CO{sub 2} reduction by as much as 56% and 77% can be achieved when methanol is used in internal combustion and fuel cell automotive vehicles, respectively.
Date: July 7, 1997
Creator: Steinberg, M.
Partner: UNT Libraries Government Documents Department

Beneficial Use of Drilling Waste - A Wetland Restoration Technology

Description: The results obtained thus far are promising with regard to the low toxicity of restored drill cuttings (particularly the Cameron substrate) with increasing levels of salinity. Water extraction, acid digestion, and interstitial water samples from the restored drill cuttings, as well as redox potential, soil pH and interstitial nitrate/ammonium concentrations, and the photosynthetic response, have been determined for the baseline fresh water condition (June-August 1998), at 9ppt (September-November 1998), at 18ppt (December-February 1998,1999), and at 27ppt (currently underway). Salinities will be brought to full-strength seawater (36ppt) on May 24, 1999. The Cameron drill cuttings are remarkably similar to dredge spoil, which is currently being used as a wetland creation substrate. The few elements that were extracted into the interstitial water were primarily cations (Ca, K, Mg) and were not elevated to a level that would pose a threat to wetlands productivity. Swaco drill cuttings remained high in aluminum with concomitant high pH, which likely resulted in limited plant productivity through hindered nutrient uptake.
Date: July 1, 1999
Creator: Resources, Pioneer Natural
Partner: UNT Libraries Government Documents Department

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

Description: The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.
Date: July 1, 1995
Creator: Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr. & Zaharchuk, R.
Partner: UNT Libraries Government Documents Department

Utilization of low NO{sub x} coal combustion by-products. Quarterly report, April--June 1995

Description: This project is studying a beneficiation process to make power plant fly ash a more useful by-product. The tasks include: (1) Laboratory characterization: Sample collection; Material characterization; and Lab testing of ash processing operations; (2) Pilot plant testing of the separation of carbon from fly ash; (3) Product testing: Concrete testing and Plastic fillers; and (4) Market and economic analysis. Appendices present information on material characterization, laboratory testing of a flotation process, pilot runs, and concrete testing results.
Date: July 1, 1995
Partner: UNT Libraries Government Documents Department

Catalytic pyrolysis of automobile shredder residue

Description: In the United States, approximately 10 million automobiles are scrapped and shredded each year. The mixture of plastics and other materials remaining after recovery of the metals is known as Automobile Shredder Residue (ASR). In 1994, about 3.5 million tons of ASR was produced and disposed of in landfills. However, environmental, legislative, and economic considerations are forcing the industry to search for recycling or other alternatives to disposal. Numerous studies have been done relating the ASR disposal problem to possible recycling treatments such as pyrolysis, gasification, co-liquefaction of ASR with coal, chemical recovery of plastics from ASR, catalytic pyrolysis, reclamation in molten salts, and vacuum pyrolysis. These and other possibilities have been studied intensively, and entire symposia have been devoted to the problem. Product mix, yields, toxicology issues, and projected economics of conceptual plant designs based on experimental results are among the key elements of past studies. Because the kinds of recycling methods that may be developed, along with their ultimate economic value, depend on a very large number of variables, these studies have been open-ended. It is hoped that it may be useful to explore some of these previously studied areas from fresh perspectives. One such approach, currently under development at Argonne National Laboratory, is the catalytic pyrolysis of ASR.
Date: July 1, 1995
Creator: Arzoumanidis, G.G.; McIntosh, M.J. & Steffensen, E.J.
Partner: UNT Libraries Government Documents Department

Energy implications of integrated solid waste management systems. Final report

Description: This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.
Date: July 1, 1994
Creator: Little, R. E.; McClain, G.; Becker, M.; Ligon, P. & Shapiro, K.
Partner: UNT Libraries Government Documents Department

Providing solutions to energy and environmental problems. Quarterly technical progress report, April 1, 1997--June 30, 1997

Description: The Jointly Sponsored Research Program emphasizes technology commercialization and continues to be highly successful and supported strongly and enthusiastically by WRI`s industrial clientele. All of the available Department of Energy (USDOE) funding for each of the first seven years has been committed to projects. This report provides fossil fuel project descriptions and environmental programs related to the monitoring in those programs.
Date: July 1, 1997
Partner: UNT Libraries Government Documents Department

Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

Description: Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.
Date: July 1, 1992
Creator: Folk, Richard L. & Govett, Robert L.
Partner: UNT Libraries Government Documents Department

Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report

Description: More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.
Date: July 1, 1996
Partner: UNT Libraries Government Documents Department

Management of dry flue gas desulfurization by-products in underground mines. The development and testing of collapsible intermodal containers for the handling and transport of coal combustion residues

Description: SEEC, Incorporated, is developing a collapsible intermodal container (CIC{trademark}) designed for containment and transport of fly ash and other dry-flowable bulk commodities. The CIC is specially configured to ride in open top rail cars, but as an intermodal container, it also rides in barges and on flat bed trailers. This allows SEEC to use unit coal train back haul capacity to transport fly ash to markets at and near coal mines. SEEC`s goals for this project were to design a CIC for handling and transporting dry fly ash, and then demonstrate the CIC technology. During this project, SEEC has performed extensive initial design work, leading to the manufacture of three prototype CICs for demonstration. Preliminary tests to examine safety issues included finite element analyses and an overload test in which the CIC was lifted while carrying weight in excess of its rated capacity. In both cases, the CIC met all safety requirements. With the above information satisfying possible safety concerns in hand, SEEC worked with SIU and other cooperators to plan and carry out field demonstration and testing of three CICs. This demonstration/testing including filling the CICs with fly ash, transporting them in a coal hopper car, handling with standard intermodal equipment, and emptying by inverting (two CICs) and by vacuuming (one CIC). Results were very positive. Filling with fly ash, transporting, and intermodal handling went very well, as did emptying by vacuum. Emptying by inverting was less successful, but most of the problems were predicted ahead of time, and were mostly due to lack of fly ash fluidizing equipment as much as anything. Throughout the testing, valuable information was gathered that will greatly accelerate refinement of both the CIC and the system of CIC handling.
Date: July 1, 1995
Creator: Carpenter, J.L. & Thomasson, E.M.
Partner: UNT Libraries Government Documents Department

PURPA Resource Development in the Pacific Northwest : Case Studies of Ten Electricity Generating Powerplants.

Description: The case studies in this document describe the Public Utilities, Regulatory Policies Act (PURPA) development process for a variety of generating technologies. Developer interactions with regulatory agencies and power purchasers are described in some detail. Equipment, installation, and maintenance costs are identified; power marketing considerations are taken into account; and potential environmental impacts, with corresponding mitigation approaches and practices are summarized. The project development case studies were prepared by the energy agencies of the four Northwest states, under contract to the Bonneville Power Administration.
Date: July 1990
Creator: Washington State Energy Office
Partner: UNT Libraries Government Documents Department

Production of degradable polymers from food-waste streams

Description: In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.
Date: July 1, 1992
Creator: Tsai, S. P.: Coleman, R. D.; Bonsignore, P. V. & Moon, S. H.
Partner: UNT Libraries Government Documents Department

Base program on energy related research. Quarterly technical progress report, November 1993--January 1994

Description: This report consists of brief reports on a number of processes involving: gas injection in oil wells; coalbed methane recovery simulation; a portable data acquisition system; development of a premium fuel from western coal; optimization of recycle oil process for eastern oil shales; solid waste management and waste product utilization; mercury recovery from coal; remedial action taken with contaminated soils; and heavy oil/plastics co-processing.
Date: July 1, 1994
Partner: UNT Libraries Government Documents Department