Search Results

Advanced search parameters have been applied.
open access

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

Description: The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodific… more
Date: December 2017
Creator: De Silva, Vashista C
Partner: UNT Libraries
open access

Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

Description: Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily up… more
Date: May 1, 2008
Creator: Claridge, Shelley A
Partner: UNT Libraries Government Documents Department
open access

Developing new optical imaging techniques for single particle and molecule tracking in live cells

Description: Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of ph… more
Date: December 15, 2010
Creator: Sun, Wei
Partner: UNT Libraries Government Documents Department
open access

Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

Description: Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the… more
Date: August 9, 2006
Creator: Driskell, Jeremy Daniel
Partner: UNT Libraries Government Documents Department
open access

Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations

Description: Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. Th… more
Date: August 2017
Creator: Lanier, Steven t
Partner: UNT Libraries
open access

Surface modes at metallic an photonic crystal interfaces

Description: A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmissi… more
Date: January 1, 2009
Creator: Dai, Weitao
Partner: UNT Libraries Government Documents Department

Surface Plasmon Based Nanophotonic Optical Emitters

Description: Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system wit… more
Access: Restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2005
Creator: Vemuri, Padma Rekha
Partner: UNT Libraries
open access

Quantum Coherence Effects Coupled via Plasmons

Description: This thesis is an attempt at studying quantum coherence effects coupled via plasmons. After introducing the quantum coherence in atomic systems in Chapter 1, we utilize it in Chapter 2 to demonstrate a new technique of detection of motion of single atoms or irons inside an optical cavity. By taking into account the interaction of coherences with surface plasmonic waves excited in metal nanoparticles, we provide a theoretical model along with experimental data in Chapter 3 to describe the modifi… more
Date: December 2018
Creator: Moazzezi, Mojtaba
Partner: UNT Libraries
open access

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Description: A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains cor… more
Date: May 2016
Creator: Karna, Sanjay K.
Partner: UNT Libraries
open access

Interaction of Plasmons and Excitons for Low-Dimension Semiconductors

Description: The effects of surface plasmon for InGaN/GaN multi-quantum wells and ZnO nanoparticles optical linear and nonlinear emission efficiency had been experimentally studied. Due to the critical design for InGaN MQWs with inverted hexagonal pits based on GaN, both contribution of surface plasmon effect and image charge effect at resonant and off resonant frequencies were experimentally and theoretically investigated. With off- resonant condition, the InGaN MQWs emission significantly enhanced by meta… more
Date: December 2014
Creator: Lin, Jie (physicist)
Partner: UNT Libraries
open access

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the disser… more
Date: May 2012
Creator: Nagaraj, Nagaraj
Partner: UNT Libraries

UV Magnetic Plasmons in Cobalt Nanoparticles

Description: The main goals of this research were to fabricate magnetic cobalt nanoparticles and study their structural, crystal structure, optical, and magnetic properties. Cobalt nanoparticles with average particle size 8.7 nm were fabricated by the method of high temperature reduction of cobalt salt utilizing trioctylphosphine as a surfactant, oleic acid as a stabilizer, and lithium triethylborohydride as a reducing reagent. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the formation of c… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Bhatta, Hari Lal
Partner: UNT Libraries
open access

Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics

Description: Various anomalous effects that emerge when the interfaces between media are involved in sound-matter or light-matter interactions are studied. The three specific systems examined are a fluid channel between elastic metal plates, a linear chain of metallic perforated cylindrical shells in air, and a metal-dielectric slab with the interfaces treated as finite regions of smoothly changing material properties. The scattering of acoustic signals on the first two is predicted to be accompanied by the… more
Date: December 2018
Creator: Bozhko, Andrii
Partner: UNT Libraries
Back to Top of Screen