4 Matching Results

Search Results

Advanced search parameters have been applied.

Developement of a same-side kaon tagging algorithm of B^0_s decays for measuring delta m_s at CDF II

Description: The authors developed a Same-Side Kaon Tagging algorithm to determine the production flavor of B{sub s}{sup 0} mesons. Until the B{sub s}{sup 0} mixing frequency is clearly observed the performance of the Same-Side Kaon Tagging algorithm can not be measured on data but has to be determined on Monte Carlo simulation. Data and Monte Carlo agreement has been evaluated for both the B{sub s}{sup 0} and the high statistics B{sup +} and B{sup 0} modes. Extensive systematic studies were performed to quantify potential discrepancies between data and Monte Carlo. The final optimized tagging algorithm exploits the particle identification capability of the CDF II detector. it achieves a tagging performance of {epsilon}D{sup 2} = 4.0{sub -1.2}{sup +0.9} on the B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +} sample. The Same-Side Kaon Tagging algorithm presented here has been applied to the ongoing B{sub s}{sup 0} mixing analysis, and has provided a factor of 3-4 increase in the effective statistical size of the sample. This improvement results in the first direct measurement of the B{sub s}{sup 0} mixing frequency.
Date: June 1, 2006
Creator: Menzemer, Stephanie & U., /Heidelberg
Partner: UNT Libraries Government Documents Department

Design and Application of the Reconstruction Software for the BaBar Calorimeter

Description: The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.
Date: July 7, 2006
Creator: Strother, Philip David & /Imperial Coll., London
Partner: UNT Libraries Government Documents Department

A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT

Description: We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.
Date: July 5, 2006
Creator: Va'vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B. et al.
Partner: UNT Libraries Government Documents Department

Development of a Focusing DIRC

Description: Benefiting from the recent introduction of new fast vacuum-based photon detectors with a transit time spread of {sigma}{sub TTS} {approx} 30-150 ps, we are developing a novel RICH detector capable of correcting the chromatic error through good time measurements; we believe that this is the first time such a technique has been demonstrated. We have built and successfully tested a particle identification detector called ''Focusing DIRC''. The concept of the prototype is based on the BaBar DIRC, with several important improvements: (a) much faster pixelated photon detectors based on Burle MCP-PMTs and Hamamatsu MaPMTs, (b) a focusing mirror which allows the photon detector to be smaller and less sensitive to background in future applications, (c) electronics allowing the measurement of single photon timing to better than {sigma} {approx} 100-200ps, which allows a correction of the chromatic error. The detector was tested in a SLAC 10GeV/c electron test beam. This detector concept could be used for particle identification at Super B-factory, ILC, GlueX, Panda, etc.
Date: December 12, 2006
Creator: Benitez, J.; Bedajanek, I.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Suzuki, K. et al.
Partner: UNT Libraries Government Documents Department