2 Matching Results

Search Results

Advanced search parameters have been applied.

The CEBAF Large Acceptance Spectrometer (CLAS)

Description: The CEBAF Large Acceptance Spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about thirty institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cerenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data acquisition rates allow operation at a luminosity of 10{sup 34} nucleon cm {sup -2}s{sup -1}. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarized and unpolarized electron and photon beams and targets. This paper is a comprehensive and general description of the design, construction and performance of CLAS.
Date: January 1, 2003
Creator: Mecking, Bernhard & Collaboration, CLAS
Partner: UNT Libraries Government Documents Department

Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sqrt(sNN) = 200 GeV

Description: Identified mid-rapidity particle spectra of {pi}{sup {+-}}, K{sup {+-}}, and p({bar p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (R{sub dAu}) between (p+ {bar p}) and charged hadrons (h) in the transverse momentum range 1.2 < p{sub T} < 3.0 GeV/c is measured to be 1.19 {+-} 0.05(stat) {+-} 0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p + {bar p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.
Date: September 16, 2003
Creator: Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D. et al.
Partner: UNT Libraries Government Documents Department