44 Matching Results

Search Results

Advanced search parameters have been applied.

Grouting guidelines for Hanford Tanks Initiative cone penetrometer borings

Description: Grouting of an open cone penetrometer (CP) borehole is done to construct a barrier that prevents the vertical migration of fluids and contaminants between geologic units and aquifers intersected by the boring. Whether to grout, the types of grout, and the method of deployment are functions of the site-specific conditions. This report recommends the strategy that should be followed both before and during HTI [Hanford Tanks Initiative] CP deployment to decide specific borehole grouting needs at Hanford SST farms. Topics discussed in this report that bear on this strategy include: Regulatory guidance, hydrogeologic conditions, operational factors, specific CP grouting deployment recommendations.
Date: May 18, 1998
Creator: Iwatate, D.F.
Partner: UNT Libraries Government Documents Department

Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

Description: During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.
Date: May 1997
Partner: UNT Libraries Government Documents Department

HWMA closure plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory

Description: The Waste Calcining Facility (WCF) calcined and evaporated aqueous wastes generated from the reprocessing of spent nuclear fuel. The calciner operated from 1963 to 1981, primarily processing high level waste from the first cycle of spent fuel extraction. Following the calciner shutdown the evaporator system concentrated high activity aqueous waste from 1983 until 1987. In 1988, US Department of Energy Idaho Operations Office (DOE-ID) requested interim status for the evaporator system, in anticipation of future use of the evaporator system. The evaporator system has not been operated since it received interim status. At the present time, DOE-ID is completing construction on a new evaporator at the New Waste Calcining Facility (NWCF) and the evaporator at the WCF is not needed. The decision to not use the WCF evaporator requires Lockheed Idaho Technologies Company (LITCO) and DOE-ID to close these units. After a detailed evaluation of closure options, LITCO and DOE-ID have determined the safest option is to fill the voids (grout the vessels, cells and waste pile) and close the WCF to meet the requirements applicable to landfills. The WCF will be covered with a concrete cap that will meet the closure standards. In addition, it was decided to apply these closure standards to the calcining system since it is contained within the WCF building. The paper describes the site, waste inventory, closure activities, and post-closure care plans.
Date: May 1, 1996
Partner: UNT Libraries Government Documents Department

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence: Quarterly report, March 1-May 31, 1995

Description: During Phase I (first 18 months) the project is segregated into four areas of reporting: (A) Grout Formulation, (B) Grout Characterization, (C) Water Quality Monitoring, (D) Subsidence Control & Contaminant Transport. The first component involves formulating a grout mixture with appropriate flowability and strength (flow and strength requirements will be set by other components) to be used in filling complex mine voids. The Grout Characterization component will determine the flowability characteristics of the formulated grout and model the flow of the grout filling the mine void. The Water Quality component involves background monitoring of water quality and precipitation at the Phase III (Longridge) mine site. The last component involves evaluating the strength requirements and the migration of contaminants through the candidate grouts. This report separately discusses progress on all components of the program in order of project subtask. The subtasks are arranged according to the Network Diagram on the following pages. Progress for each subtask can be seen in the Gantt Chart following the Network Diagram.
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A--D

Description: During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion data. The technical objective of the removal action was to reduce the off-site transport of Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70% of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 X 10{sup {minus}6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground. The main report describes brief background to the project, describes and analyzes the grouting operations, draws conclusions from the work performed, and presents some of the lessons learned. Appendices contain: (A) pipe driving records; (B) casing grout injection records; (C) in-situ hydraulic conductivity testing records; and (D) grout quality control testing records.
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

Laboratory evaluation of performance and durability of polymer grouts for subsurface hydraulic/diffusion barriers. Informal report, October 1993--May 1994

Description: Contaminated soils, buried waste and leaking underground storage tanks pose a threat to the environment through contaminant transport. One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier. Subsurface barriers increase the performance of waste disposal sites by providing a low permeability layer that can reduce percolation water migration into the waste site, minimize surface transport of contaminants, and reduce migration of volatile species. Also, a barrier can be constructed to envelop the site or plume completely, there by containing the contaminants and the potential leakage. Portland cement grout curtains have been used for barriers around waste sites. However, large castings of hydraulic cements result invariably in cracking due to shrinkage, thermal stresses induced by the hydration reactions, and wet-dry cycling prevalent at and sites. Therefore, improved, low permeability, high integrity materials are under investigation by the Department of Energy`s (DOE) Office of Technology Development, Integrated Demonstrations and Programs. The binders chosen for characterization include: an acrylic, a vinylester styrene, bitumen, a polyester styrene, furfuryl alcohol, and sulfur polymer cement. These materials cover broad ranges of chemical and physical durability, performance, viscosity, and cost. This report details the results of laboratory formulation, testing, and characterization of several innovative polymer grouts. An appendix containing a database of the barrier materials is at the end of this report.
Date: May 1, 1994
Creator: Heiser, J.H. & Milian, L.W.
Partner: UNT Libraries Government Documents Department

Field grouting summary report on the WAG seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text

Description: During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70% of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup {minus}6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

Demonstration of close-coupled barriers for subsurface containment of buried waste

Description: A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.
Date: May 1, 1996
Creator: Dwyer, B.P.
Partner: UNT Libraries Government Documents Department

Monitoring well plugging and abandonment plan, Y-12 Plant, Oak Ridge, Tennessee (revised)

Description: Plugging and abandonment (P&A) of defunct groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP) (AJA Technical Services, Inc. 1996). This document is the revised groundwater monitoring well P&A plan for the U.S. Department of Energy (DOE) Y-12 Plant located in Oak Ridge, Tennessee. This plan describes the systematic approach employed by Y-12 Plant GWPP to identify wells that require P&A, the technical methods employed to perform P&A activities, and administrative requirements. Original documentation for Y-12 Plant GWPP groundwater monitoring well P&A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P&A was provided in HSW, Inc. (1991). The original revision of the plan specified that a comprehensive monitoring well P&A schedule be maintained. Wells are added to this list by issuance of both a P&A request and a P&A addendum to the schedule. The current Updated Subsurface Data Base includes a single mechanism to track the status of monitoring wells. In addition, rapid growth of the groundwater monitoring network and new regulatory requirements have resulted in constant changes to the status of wells. As a result, a streamlined mechanism to identify and track monitoring wells scheduled for P&A has been developed and the plan revised to formalize the new business practices.
Date: May 1, 1997
Partner: UNT Libraries Government Documents Department

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

Description: The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.
Date: May 1, 1998
Creator: ALLAN,M.
Partner: UNT Libraries Government Documents Department

Treatment, storage, and disposal alternatives for the gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: The gunite and associated tanks (GAAT) are inactive, liquid low-level waste tanks located in and around the North and South Tank Farms at Oak Ridge National Laboratory. These underground tanks are the subject of an ongoing treatability study that will determine the best remediation alternatives for the tanks. As part of the treatability study, an assessment of viable treatment, storage, and disposal (TSD) alternatives has been conducted. The report summarizes relevant waste characterization data and statistics obtained to date. The report describes screening and evaluation criteria for evaluating TSD options. Individual options that pass the screening criteria are described in some detail. Order-or-magnitude cost estimates are presented for each of the TSD system alternatives. All alternatives are compared to the baseline approach of pumping all of the GAAT sludge and supernate to the Melton Valley Storage Tank (MVST) facility for eventual TSD along with the existing MOST waste. Four TSD systems are identified as alternatives to the baseline approach. The baseline is the most expensive of the five identified alternatives. The least expensive alternative is in-situ grouting of all GAAT sludge followed by in-situ disposal. The other alternatives are: (1) ex-situ grouting with on-site storage and disposal at Nevada Test Site (NTS); (2) ex-situ grouting with on-site storage and disposal at NTS and the Waste Isolation Pilot Plant (WIPP); and (3) ex-situ vitrification with on-site storage and disposal at NTS and WIPP.
Date: May 1, 1996
Creator: DePew, R.E.; Rickett, K.; Redus, K.S.; DuMont, S.P.; Lewis, B.E.; DePaoli, S.M. et al.
Partner: UNT Libraries Government Documents Department

High performance CLSM field mixing and pumping test results

Description: An improved low bleed water CLSM mix was field tested on May 13, 1997 at the Throop portable auger batching plant. Production and pumping tests were very successful. The four cubic yards of material pumped into a ply wood form where it flowed 48 feet (the entire length of the form). The CLSM slurry was very uniform, self leveling, cohesive, showed no segregation, and had no bleed water. Properties of the High Performance CLSM were the same for material collected at the auger and at the end of the pipeline except for the air content which was 5.5% at the auger and 3.2% at the end of the pipeline. This is exactly what was expected and indicates that this CLSM is easy to mix and pump in the Throop/BSRI equipment. CLSM Mix TW-10 is recommended for Tank Closure based on the field batching and pumping tests.
Date: May 14, 1997
Creator: Rajendran, N. & Langton, C.A.
Partner: UNT Libraries Government Documents Department

Grout performance in support of in situ stabilization/solidification of the GAAT tank sludges

Description: The Gunite{trademark} and associated tanks (GAATs) were constructed at ORNL between 1943 and 1951 and were used for many years to collect radioactive and chemical wastes. These tanks are currently inactive. Varying amounts of the sludge were removed and disposed of through the Hydrofracture Program. Thus, some tanks are virtually empty, while others still contain significant amounts of sludge and supernatant. In situ grouting of the sludges in the tanks using multi-point injection (MPI{trademark}), a patented, proprietary technique, is being investigated as a low-cost alternative to (1) moving the sludges to the Melton Valley Storage Tanks (MVSTs) for later solidification and disposal, (2) ex situ grouting of the sludges followed by either disposal back in the tanks or containerizing and disposal elsewhere, and (3) vitrification of the sludges. The paper discusses the chemical characteristics of the GAATs and the type of chemical surrogate that was used during the leachability tests. T his is followed by the experimental work, which, consisted of scope testing and sensitivity testing. The scope testing explored the rheology of the proposed jetting slurries and the settling properties of the proposed grouts using sand-water mixes for the wet sludge. After establishing a jetting slurry and grout with an acceptable rheology and settling properties, the proposed in situ grout formulation was subjected to sensitivity testing for variations in the formulation.
Date: May 1, 1997
Creator: Spence, R.D. & Kauschinger, J.L.
Partner: UNT Libraries Government Documents Department

Oak Ridge National Laboratory Old Hydrofracture Facility Tank Closure Plan and Grout Development Status Report for FY 1999

Description: U.S. Department of Energy (DOE) facilities across the country have radioactive waste underground storage tanks, which will require either complete removal of the tank contents and tank shells or in-place stabilization of sludge heels. Complete removal of the sludge and tank shells can become costly while providing little benefit to health, safety, and the environment. An alternative to the removal of the residual wastes and tank shells is the use of in situ solidification and stabilization techniques to immobilize the Resource Conservation and Recovery Act (RCRA) and radioactive components present in waste storage tanks. One technology for in situ remediation of tank wastes is Ground Environmental Service's (GES's) Multi-Point-Injection (MPI.) technology. MPI technology is a patented delivery system, which uses simple and inexpensive injection tools for rapid delivery of grout or other treatment agents, as well as for the emplacement of subsurface barriers. Through the use of tailored grout formulations in conjunction with a system of specially designed grout injection tools, MPI technology is capable of producing a uniform mixture of sludge and grout. Grouts can be tailored for the immobilization of specific RCRA and radioactive constituents. The system of injection tools is designed to maximize the mixing efficiency of the grout with the wastes in the tank. MPI technology has been successfully demonstrated on the solidification of shallow buried wastes at the Oak Ridge Y-12 Plant and in large-scale pumping and mixing tests in both cylindrical and horizontal simulated waste tanks. Hot demonstration of the technology will be accomplished during the closure of the Old Hydrofracture Facility (OHF) tank at the Oak Ridge National Laboratory (ORNL) in fiscal year 2000. This report describes the closure plan for the OHF tanks and presents the status of grout formulation development at ORNL.
Date: May 8, 2000
Creator: Lewis, B.E.
Partner: UNT Libraries Government Documents Department

Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

Description: This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are ...
Date: May 12, 2004
Creator: Birdwell, JR.J.F.
Partner: UNT Libraries Government Documents Department

Stabilizing Grout Compatibility Study

Description: This report provides data that will be used to formulate the stabilizing grout and includes experimental results for Tc-99 stabilization by two reagents, (1) ground granulated blast furnace slag (GGBFS) and (2) surface treated hydroxyapatite (HA). One or both of these reagents are being considered by CH2M HILL for incorporation in the binder portion (matrix portion without sand) of the stabilizing grout. The technical basis for identifying the grout ingredient(s) for stabilizing technetium (Tc-99) will be provided by researchers at the Savannah River Technology Center (SRTC) in a subsequent report.
Date: May 19, 2004
Creator: Harbour, John R.
Partner: UNT Libraries Government Documents Department

Assessment of the Potential for Hydrogen Generation During Grouting Operations in the R and P Reactor Vessels

Description: The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D and D). D and D activities consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS and T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D and D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement groupt (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel cotnains significantly less aluminum based on current facility process knowledge, surface observations, and drawings. Therefore, a Portland cement grout may be considered for grouting operations as well as the other grout formulations. For example, if the grout fill rate is less than 1 inch/min and ...
Date: May 24, 2010
Creator: Wiersma, B.
Partner: UNT Libraries Government Documents Department

Recommended analysis plan for the borehole plugging program potash core test

Description: A four-year old plugged potash core hole near the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico has been proposed for overcoring, in order to examine the behavior of known grout mix constituents in contact with a variety of rock types during an extended grout-curing interval. This report recommends that various geochemical analyses be applied to the core samples containing both grout and rock and the interface between the two. The methods to be used include optical petrography, electron microscopy, electron probe microanalysis, x-ray diffraction, thermal analysis (TGA, DSC, DTA) with gas chromatography/mass spectrometry, and bulk chemical analysis. These analyses would allow identification of phases which have developed during grout curing, and provide evidence of reactions which may have taken place among constituents in the system grout-rock-groundwater. These reactions, and their sequence of occurrence will be compared with reactions predicted by thermodynamic modeling as the system seeks its lowest Gibbs' free energy. Identification of reactions which have the potential for compromising the integrity of a grout plug will receive special attention. Since not all such detrimental reactions can be observed directly in a human lifetime, due to kinetic inhibitions, and since a capability of time-dependent prediction of their degree of occurrence cannot be developed, thermodynamic modeling is the only known way of evaluating the long-term stability of a grout plug. The analysis of the plug-rock system will give an indication of in situ curing history of grout plug, and will allow an early occurrence of potentially detrimental reactions to be detected. Thus, this activity will be a case-study of suitability of certain grout mixtures for use in evaporites, as an example of evaluation of grouts for long-term compatability with a variety of rock types.
Date: May 1, 1980
Creator: Lambert, S. J.
Partner: UNT Libraries Government Documents Department

Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 2. Text

Description: Results of a preliminary study are presented of the technical feasibility of radioactive waste disposal by hydraulic fracturing and injection into shale formations below the Nuclear Fuel Services Incorporated site at West Valley, New York. At this time there are approximately 600,000 gallons of high level neutralized Purex waste, including both the supernate (liquid) and sludge, and a further 12,000 gallons of acidic Thorex waste stored in tanks at the West Valley facilities. This study assesses the possibility of combining these wastes in a suitable grout mixture and then injecting them into deep shale formations beneath the West Valley site as a means of permanent disposal. The preliminary feasibility assessment results indicated that at the 850 to 1,250 feet horizons, horizontal fracturing and injection could be effectively achieved. However, a detailed safety analysis is required to establish the acceptability of the degree of isolation. The principal concerns regarding isolation are due to existing and possible future water supply developments within the area and the local effects of the buried valley. In addition, possible future natural gas developments are of concern. The definition of an exclusion zone may be appropriate to avoid problems with these developments. The buried valley may require the injections to be limited to the lower horizon depending on the results of further investigations.
Date: May 1, 1978
Partner: UNT Libraries Government Documents Department

Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 1. Executive summary. Preliminary feasibility study

Description: Results of a preliminary study, of the technical feasibility of radioactive waste disposal by hydraulic fracturing and injection into shale formations below the West Valley, New York site. In the hydraulic fracturing and injection process the liquid waste would be diluted, and mixed with cement, clay and other additives to form a stable solid matrix after injection. The waste could be injected into the shale beds, 800 to 1,500 feet below the existing site in zones suitable for horizontal fracturing and to provide satisfactory long term isolation. Hydraulic fracturing has been in use for the disposal of radioactive wastes at Oak Ridge National Laboratory (ORNL), Tennessee since the mid 1960's. To date, over 1.8 million gallons of grout containing radioactive waste have been successfully injected at that site. In this study the West Valley site has been assessed in terms of the requirements for satisfactory disposal of radioactive waste by hydraulic fracturing on the basis of currently available information. A program of research and development, required to confirm or reject this means of disposal at the West Valley site, has been outlined.
Date: May 1, 1978
Partner: UNT Libraries Government Documents Department

Bell Canyon Test (BCT): cement development report

Description: The Borehole Plugging (BHP) materials development program which has been underway at WES under Sandia sponsorship for about five years is reviewed. Development testing data for candidate grout mixtures for the BCT plug are presented. Field batching, mixing, and placement operations are discussed. Data from field samples molded during the two plug placements include strength, expansion, compressional wave velocity, dynamic modulus, density, and porosity. Microstructure and composition are compared for grout samples at ages of a few weeks and one year.
Date: May 1, 1980
Creator: Gulick, C. W.; Boa, Jr., J. A. & Buck, A. D.
Partner: UNT Libraries Government Documents Department

Evaluation of liners for a uranium-mill tailings disposal site: a status report

Description: The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, and acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.
Date: May 1, 1981
Creator: Buelt, J.L.; Hale, V.Q.; Barnes, S.M. & Silviera, D.J.
Partner: UNT Libraries Government Documents Department

Field study plan for alternate barriers

Description: Pacific Northwest Laboratory (PNL) is providing technical assistance in selecting, designing, evaluating, and demonstrating protective barriers. As part of this technical assistance effort, asphalt, clay, and chemical grout will be evaluated for use as alternate barriers. The purpose of the subsurface layer is to reduce the likelihood that extreme events (i.e., 100-year maximum storms, etc.) will cause significant drainage through the barrier. The tests on alternate barriers will include laboratory and field analysis of the subsurface layer performance. This field test plan outlines the activities required to test and design subsurface moisture barriers. The test plan covers activities completed in FY 1988 and planned through FY 1992 and includes a field-scale test of one or more of the alternate barriers to demonstrate full-scale application techniques and to provide performance data on a larger scale. Tests on asphalt, clay, and chemical grout were initiated in FY 1988 in small (30.5 cm diameter) tube-layer lysimeters. The parameters used for testing the materials were different for each one. The tests had to take into account the differences in material characteristics and response to change in conditions, as well as information provided by previous studies. 33 refs., 8 figs., 1 tab.
Date: May 1, 1989
Creator: Freeman, H.D.; Gee, G.W. & Relyea, J.F.
Partner: UNT Libraries Government Documents Department

Examination of sample of grout after 63 years exposure underground. Technical report

Description: During an investigation of the Troy Lock and Dam, New York, a core was recovered that contained part of a metal anchor that had been grouted into foundation rock. Since this grout was about 63 years old and had presumably been continuously below the water table, it provided an opportunity to study the effect of this environment for this period of time on the phase composition and microstructure of this grout. The phase composition of the grout was studied by x-ray diffraction; its microstructure was studied by scanning electron microscopy. It was found that the grout had a normal composition and microstructure; the environmental conditions had not had a significant effect on either composition or microstructure. The original water content had been fairly high as would be expected.
Date: May 1, 1981
Creator: Rhoderick, J.E.
Partner: UNT Libraries Government Documents Department