108 Matching Results

Search Results

Advanced search parameters have been applied.

The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

Description: Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative to the metal (entry 6). Other phosphine ...
Date: December 10, 2007
Creator: Ellman, Jonathan A.; Yotphan, Sirilata & Bergman, Robert
Partner: UNT Libraries Government Documents Department

Boltzmann babies in the proper time measure

Description: After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.
Date: December 20, 2007
Creator: Bousso, Raphael; Bousso, Raphael; Freivogel, Ben & Yang, I-Sheng
Partner: UNT Libraries Government Documents Department

TEM Study of Fracturing in Spherical and Plate-like LiFePO4Particles

Description: An investigation of fracturing in LiFePO{sub 4} particles as a function of the particle morphology and history is presented. Two types of samples, one subjected to electrochemical cycling and another to chemical delithiation are compared. We observe the formation of micro fractures parallel to low indexed lattice planes in both samples. The fracture surfaces are predominantly parallel to (100) planes in the chemically delithiated powder and (100) and (010) planes in the electrochemically cycled powder. A consideration of the threshold stresses for dislocation glide shows that particle geometry plays an important role in the observed behavior.
Date: December 20, 2007
Creator: Gabrisch, H.; Wilcox, J. & Doeff, M.M.
Partner: UNT Libraries Government Documents Department

Inf-sup estimates for the Stokes problem in a periodic channel

Description: We derive estimates of the Babuska-Brezzi inf-sup constant {beta} for two-dimensional incompressible flow in a periodic channel with one flat boundary and the other given by a periodic, Lipschitz continuous function h. If h is a constant function (so the domain is rectangular), we show that periodicity in one direction but not the other leads to an interesting connection between {beta} and the unitary operator mapping the Fourier sine coefficients of a function to its Fourier cosine coefficients. We exploit this connection to determine the dependence of {beta} on the aspect ratio of the rectangle. We then show how to transfer this result to the case that h is C{sup 1,1} or even C{sup 0,1} by a change of variables. We avoid non-constructive theorems of functional analysis in order to explicitly exhibit the dependence of {beta} on features of the geometry such as the aspect ratio, the maximum slope, and the minimum gap thickness (if h passes near the substrate). We give an example to show that our estimates are optimal in their dependence on the minimum gap thickness in the C{sup 1,1} case, and nearly optimal in the Lipschitz case.
Date: December 10, 2008
Creator: Wilkening, Jon
Partner: UNT Libraries Government Documents Department

Curved mesh generation and mesh refinement using Lagrangian solid mechanics

Description: We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Date: December 31, 2008
Creator: Persson, P.-O. & Peraire, J.
Partner: UNT Libraries Government Documents Department

Practical error estimates for Reynolds' lubrication approximation and its higher order corrections

Description: Reynolds lubrication approximation is used extensively to study flows between moving machine parts, in narrow channels, and in thin films. The solution of Reynolds equation may be thought of as the zeroth order term in an expansion of the solution of the Stokes equations in powers of the aspect ratio {var_epsilon} of the domain. In this paper, we show how to compute the terms in this expansion to arbitrary order on a two-dimensional, x-periodic domain and derive rigorous, a-priori error bounds for the difference between the exact solution and the truncated expansion solution. Unlike previous studies of this sort, the constants in our error bounds are either independent of the function h(x) describing the geometry, or depend on h and its derivatives in an explicit, intuitive way. Specifically, if the expansion is truncated at order 2k, the error is O({var_epsilon}{sup 2k+2}) and h enters into the error bound only through its first and third inverse moments {integral}{sub 0}{sup 1} h(x){sup -m} dx, m = 1,3 and via the max norms {parallel} 1/{ell}! h{sup {ell}-1}{partial_derivative}{sub x}{sup {ell}}h{parallel}{sub {infinity}}, 1 {le} {ell} {le} 2k + 2. We validate our estimates by comparing with finite element solutions and present numerical evidence that suggests that even when h is real analytic and periodic, the expansion solution forms an asymptotic series rather than a convergent series.
Date: December 10, 2008
Creator: Wilkening, Jon
Partner: UNT Libraries Government Documents Department


Description: Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems.
Date: December 22, 2008
Creator: Hardy, B & Donald L. Anton, D
Partner: UNT Libraries Government Documents Department

Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

Description: Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of these spectra to the SFG spectra of interfacial polylysine and ...
Date: December 19, 2007
Creator: York, Roger L.
Partner: UNT Libraries Government Documents Department

Mineralogy and Distribution of Hydrothermal Mineral Zones in Los Azufres (Mexico) Geothermal Field

Description: General features of the geometry of Los Azufres reservoir have been defined through the mapping of hydrothermal mineral alteration zones. Hydrothermal alteration has been studied in cuttings and drill cores from most of the active wells. X-ray diffraction microprobe analysis and classical optical methods have been employed for the identification of primary and authigenic minerals in fresh and altered samples. Observed patterns of alteration have been correlated with temperature and patterns of fluid circulation. The resulting model depicts a body of geothermal fluid at depth, which ascends and discharges through two main fracture systems. These two circulation zones are characterized by concentric aureoles of increasing hydrothermal alteration towards quasivertical axes. The overall pattern could be described as a dome structure produced by the abnormal thermal gradient, distorted by the effects of active upward circulation of the fluids.
Date: December 15, 1983
Creator: Cathelineau, M.; Oliver, R.; Izquierdo, G.; Garfias, A.; Nieva, D. & Izaguirre, O.
Partner: UNT Libraries Government Documents Department

Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Based Phase Change Material (PCM)

Description: Since 2000, an ORNL research team has been testing different configurations of PCM-enhanced building envelop components to be used in residential and commercial buildings. During 2009, a novel type of thermal storage membrane was evaluated for building envelope applications. Bio-based PCM was encapsulated between two layers of heavy-duty plastic film forming a complex array of small PCM cells. Today, a large group of PCM products are packaged in such complex PCM containers or foils containing arrays of PCM pouches of different shapes and sizes. The transient characteristics of PCM-enhanced building envelope materials depend on the quality and amount of PCM, which is very often difficult to estimate because of the complex geometry of many PCM heat sinks. The only widely used small-scale analysis method used to evaluate the dynamic characteristics of PCM-enhanced building products is the differential scanning calorimeter (DSC). Unfortunately, this method requires relatively uniform, and very small, specimens of the material. However, in numerous building thermal storage applications, PCM products are not uniformly distributed across the surface area, making the results of traditional DSC measurements unrealistic for these products. In addition, most of the PCM-enhanced building products contain blends of PCM with fire retardants and chemical stabilizers. This combination of non-uniform distribution and non-homogenous composition make it nearly impossible to select a representative small specimen suitable for DSC tests. Recognizing these DSC limitations, ORNL developed a new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. An experimental analytical protocol to analyze the dynamic characteristics of PCM thermal storage makes use of larger specimens in a conventional heat-flow meter apparatus, and combines these experimental measurements with three-dimensional (3-D) finite-difference modeling and whole building energy simulations. Based on these dynamic tests and modeling, ORNL researchers then developed a simplified one-dimensional (1-D) model of the PCM-enhanced building ...
Date: December 1, 2010
Creator: Kosny, Jan; Stovall, Therese K; Shrestha, Som S & Yarbrough, David W
Partner: UNT Libraries Government Documents Department

Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

Description: Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.
Date: December 18, 2013
Creator: Lim, Chjan
Partner: UNT Libraries Government Documents Department

Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)

Description: As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum value available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem ...
Date: December 15, 2010
Creator: Nichols, A. L.
Partner: UNT Libraries Government Documents Department

Final Report: A Transport Phenomena Based Approach to Probe Evolution of Weld Macro and Microstructures and A Smart Bi-directional Model of Fusion Welding

Description: In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that the reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.
Date: December 11, 2009
Creator: DebRoy, Dr. Tarasankar
Partner: UNT Libraries Government Documents Department

Status report on high fidelity reactor simulation.

Description: This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.
Date: December 11, 2006
Creator: Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M. et al.
Partner: UNT Libraries Government Documents Department

Internal Alignment of the SLD Vertex Detector

Description: The tracking resolution and vertex finding capabilities of the SLD experiment depended upon a precise knowledge of the location and orientation of the elements of the SLD pixel vertex detector (VXD3) in 3D space. At the heart of the procedure described here to align the 96 CCDs is the matrix inversion technique of singular value decomposition (SVD). This tool was employed to unfold the detector geometry corrections from the track data in the VXD3. The algorithm was adapted to perform an optimal {chi}{sup 2} minimization by careful treatment of the track hit residual measurement errors. The tracking resolution obtained with the aligned geometry achieved the design performance. Comments are given on how this method could be used for other trackers.
Date: December 3, 2007
Creator: Jackson, D. J.; Wickens, F. J. & Su, D.
Partner: UNT Libraries Government Documents Department

Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

Description: Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in ...
Date: December 1, 2010
Creator: Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C. & Perkins, William A.
Partner: UNT Libraries Government Documents Department

Verification Test Suite for Physics Simulation Codes

Description: The DOE/NNSA Advanced Simulation & Computing (ASC) Program directs the development, demonstration and deployment of physics simulation codes. The defensible utilization of these codes for high-consequence decisions requires rigorous verification and validation of the simulation software. The physics and engineering codes used at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL) are arguably among the most complex utilized in computational science. Verification represents an important aspect of the development, assessment and application of simulation software for physics and engineering. The purpose of this note is to formally document the existing tri-laboratory suite of verification problems used by LANL, LLNL, and SNL, i.e., the Tri-Lab Verification Test Suite. Verification is often referred to as ensuring that ''the [discrete] equations are solved [numerically] correctly''. More precisely, verification develops evidence of mathematical consistency between continuum partial differential equations (PDEs) and their discrete analogues, and provides an approach by which to estimate discretization errors. There are two variants of verification: (1) code verification, which compares simulation results to known analytical solutions, and (2) calculation verification, which estimates convergence rates and discretization errors without knowledge of a known solution. Together, these verification analyses support defensible verification and validation (V&V) of physics and engineering codes that are used to simulate complex problems that do not possess analytical solutions. Discretization errors (e.g., spatial and temporal errors) are embedded in the numerical solutions of the PDEs that model the relevant governing equations. Quantifying discretization errors, which comprise only a portion of the total numerical simulation error, is possible through code and calculation verification. Code verification computes the absolute value of discretization errors relative to an exact solution of the governing equations. In contrast, calculation verification, which does not utilize a reference solution, combines an assessment of stable self-convergence and exact solution ...
Date: December 21, 2006
Creator: Brock, J S; Kamm, J R; Rider, W J; Brandon, S; Woodward, C; Knupp, P et al.
Partner: UNT Libraries Government Documents Department

Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

Description: The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.
Date: December 13, 2005
Creator: Brantley, P S
Partner: UNT Libraries Government Documents Department

ChemCell : a particle-based model of protein chemistry and diffusion in microbial cells.

Description: Prokaryotic single-cell microbes are the simplest of all self-sufficient living organisms. Yet microbes create and use much of the molecular machinery present in more complex organisms, and the macro-molecules in microbial cells interact in regulatory, metabolic, and signaling pathways that are prototypical of the reaction networks present in all cells. We have developed a simple simulation model of a prokaryotic cell that treats proteins, protein complexes, and other organic molecules as particles which diffuse via Brownian motion and react with nearby particles in accord with chemical rate equations. The code models protein motion and chemistry within an idealized cellular geometry. It has been used to simulate several simple reaction networks and compared to more idealized models which do not include spatial effects. In this report we describe an initial version of the simulation code that was developed with FY03 funding. We discuss the motivation for the model, highlight its underlying equations, and describe simulations of a 3-stage kinase cascade and a portion of the carbon fixation pathway in the Synechococcus microbe.
Date: December 1, 2003
Creator: Plimpton, Steven James & Slepoy, Alexander
Partner: UNT Libraries Government Documents Department

An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis

Description: Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.
Date: December 30, 2009
Creator: Martin, William R. & Lee, John C.
Partner: UNT Libraries Government Documents Department

Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

Description: This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison ...
Date: December 1, 2010
Creator: Mandell, John F. (Montana State University, Bozeman, MT); Ashwill, Thomas D.; Wilson, Timothy J. (Montana State University, Bozeman, MT); Sears, Aaron T. (Montana State University, Bozeman, MT); Agastra, Pancasatya (Montana State University, Bozeman, MT); Laird, Daniel L. et al.
Partner: UNT Libraries Government Documents Department

Bell-Plesset effects for an accelerating interface with contiguous density gradients

Description: A Plesset-type treatment [J. Appl. Phys. 25, 96 (1954)] is used to assess the effects of contiguous density gradients at an accelerating spherical classical interface on Rayleigh-Taylor and Bell-Plesset perturbation growth. Analytic expressions are obtained that describe enhanced Rayleigh-Taylor instability growth from contiguous density gradients aligned with the acceleration and which increase the effective Atwood number of the perturbed interface. A new pathway for geometric amplification of surface perturbations on an accelerating interface with contiguous density gradients is identified. A resonance condition between the density-gradient scalelength and the radius of the interface is also predicted based on a linearized analysis of Bernoulli's equation, potentially leading to enhanced perturbation growth. Comparison of the analytic treatment with detailed two-dimensional single-mode growth-factor simulations shows good agreement for low-mode numbers where the effects of spherical geometry are most manifested.
Date: December 20, 2005
Creator: Amendt, P
Partner: UNT Libraries Government Documents Department