133 Matching Results

Search Results

Advanced search parameters have been applied.

FINAL REPORT: DOE-FG03-95ER25250

Description: The research conducted in this project concerns the geometry of extremal surfaces, embedded minimal surfaces in particular. The methods include geometric analysis, computational simulation, mathematical visualization and software development. Minimal surface research stands at the intersection of partial differential equations, calculus of variations, complex function theory and topology. Advances in this area are often---as is the case with our research---tied to the development and implementation of computational methods and tools of mathematical visualization. Understanding the structure of the space of minimal surfaces has been important in applications from cosmology to structural engineering, as well as other applied areas including polymer physics. The subject has benefited from the discovery of new examples by the use of computation, examples far beyond the range current theoretical construction techniques. Not only are these surfaces important for the understanding of equilibrium morphology via inter-material dividing surfaces, they arise in the study of grain boundaries and dislocations. These same examples are in turn signposts for the further theoretical development in mathematics. This research project has made fundamental advances in the study of equilibrium interfaces. Carrying on the parent project that was based at the University of Massachusetts, we have: Proved the existence of large families of periodic minimal surfaces that serve as models for compound polymers. Developed software to simulate the transmission electron microscopy of the nanostructure of block copolymers, and in the understanding of materials whose structure was previously not known. Pioneered the use of numerical approximation and image simulation for minimal and CMC surfaces in the theoretical investigation of these variationally define equilibrium interfaces. Developed and maintained an archival site and model libraries This website was one of the first such sites and has served as a model for others. We have proved the existence of an embedded minimal surface of genus one with ...
Date: January 10, 2006
Creator: Hoffman, David
Partner: UNT Libraries Government Documents Department

Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

Description: The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.
Date: May 25, 2006
Creator: Egland, Keith & Ludewig, Howard
Partner: UNT Libraries Government Documents Department

Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

Description: The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.
Date: December 31, 2006
Creator: Adler, Stuart; Dunyushkina, L.; Huff, S.; Lu, Y. & Wilson, J.
Partner: UNT Libraries Government Documents Department

Development of Efficient UV-LED Phosphor Coatings for Energy Saving Solid State Lighting

Description: The University of Georgia, in collaboration with GE Global Research, has investigated the relevant quenching mechanism of phosphor coatings used in white light devices based on UV LEDs. The final goal of the project was the design and fabrication of a high-efficacy white light UV-LED device through improved geometry and optimized phosphor coatings. At the end of the research period, which was extended to seamlessly carry over the research to a follow-up program, we have demonstrated a two-fold improvement in the conversion efficiency of a white light LED device, where the increase efficacy is due to both improved phosphor quantum efficiency and lamp geometry. Working prototypes have been displayed at DOE sponsored meetings and during the final presentation at the DOE Headquarters in Washington, DC. During the first phase of the project, a fundamental understanding of quenching processes in UV-LEDs was obtained, and the relationships that describe the performance of the phosphor as a function of photon flux, temperature, and phosphor composition were established. In the second phase of the project, these findings were then implemented to design the improved UV-LED lamp. In addition, our research provides a road map for the design of efficient white light LEDs, which will be an important asset during a follow-up project led by GE.
Date: May 15, 2006
Creator: Happek, Uwe
Partner: UNT Libraries Government Documents Department

Ground Truth, Magnitude Calibration and Regional Phase Propagation and Detection in the Middle East and Horn of Africa

Description: In this project, we are exploiting unique and open source seismic data sets to improve seismic monitoring across the Middle East (including the Iranian Plateau, Zagros Mountains, Arabian Peninsula, Turkish Plateau, Gulf of Aqaba, Dead Sea Rift) and the Horn of Africa (including the northern part of the East African Rift, Afar Depression, southern Red Sea and Gulf of Aden). The data sets are being used to perform three related tasks. (1) We are determining moment tensors, moment magnitudes and source depths for regional events in the magnitude 3.0 to 6.0 range. (2) These events are being used to characterize high-frequency (0.5-16 Hz) regional phase attenuation and detection thresholds, especially from events in Iran recorded at stations across the Arabian Peninsula. (3) We are collecting location ground truth at GT5 (local) and GT20 (regional) levels for seismic events with M > 2.5, including source geometry information and source depths. In the first phase of this project, seismograms from earthquakes in the Zagros Mountains recorded at regional distances have been inverted for moment tensors, and source depths for the earthquakes have been determined via waveform matching. Early studies of the distribution of seismicity in the Zagros region found evidence for earthquakes in the upper mantle. But subsequent relocations of teleseismic earthquakes suggest that source depths are generally much shallower, lying mainly within the upper crust. Nine events with magnitudes between 5 and 6 have been studied so far. Source depths for six of the events are within the upper crust, and three are located within the lower crust. The uncertainty in the source depths of the lower crustal events allows for the possibility that some of them may have even nucleated within the upper mantle. Eight events have thrust mechanisms and one has a strike-slip mechanism. We also report estimates of ...
Date: July 10, 2006
Creator: Nyblade, A.; Adams, A.; Brazier, R.; Park, Y. & Rodgers, A.
Partner: UNT Libraries Government Documents Department

Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

Description: A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.
Date: April 5, 2006
Creator: Zhao, Zhengji; Wang, Lin-Wang & Meza, Juan
Partner: UNT Libraries Government Documents Department

Conversion of Input Data between KENO and MCNP File Formats for Computer Criticality Assessments

Description: KENO is a Monte Carlo criticality code that is maintained by Oak Ridge National Laboratory (ORNL). KENO is included in the SCALE (Standardized Computer Analysis for Licensing Evaluation) package. KENO is often used because it was specifically designed for criticality calculations. Because KENO has convenient geometry input, including the treatment of lattice arrays of materials, it is frequently used for production calculations. Monte Carlo N-Particle (MCNP) is a Monte Carlo transport code maintained by Los Alamos National Laboratory (LANL). MCNP has a powerful 3D geometry package and an extensive cross section database. It is a general-purpose code and may be used for calculations involving shielding or medical facilities, for example, but can also be used for criticality calculations. MCNP is becoming increasingly more popular for performing production criticality calculations. Both codes have their own specific advantages. After a criticality calculation has been performed with one of the codes, it is often desirable (or may be a safety requirement) to repeat the calculation with the other code to compare the important parameters using a different geometry treatment and cross section database. This manual conversion of input files between the two codes is labor intensive. The industry needs the capability of converting geometry models between MCNP and KENO without a large investment in manpower. The proposed conversion package will aid the user in converting between the codes. It is not intended to be used as a “black box”. The resulting input file will need to be carefully inspected by criticality safety personnel to verify the intent of the calculation is preserved in the conversion. The purpose of this package is to help the criticality specialist in the conversion process by converting the geometry, materials, and pertinent data cards.
Date: November 30, 2006
Creator: Schwarz, Randolph A.; Carter, Leland L. & L., Schwarz Alysia
Partner: UNT Libraries Government Documents Department

Using Parabolic Equation for Calculation of Beam Impedance

Description: In this paper we develop a new method of parabolic equation (PE) for calculation of both high-frequency and small-angle taper (or collimator) impedances. The applicability of PE in the high-frequency limit is based on the observation that in this case the contribution to impedance comes from the waves that catch up the beam far from the obstacle and propagate at small-angles to the axis of the pipe. One of the most important advantages of PE is that it eliminates the spatial scale of the small wavelength from the problem. As a result, the numerical solution of PE requires coarser spatial meshes. In the paper we focus on the longitudinal impedance for an axisymmetric geometry and assume a perfect conductivity of the walls. We show how the known analytical results which include a small-angle collimator, step-in and step-out transitions, and a pillbox cavity, can be derived within the framework of the parabolic equation.
Date: April 7, 2006
Creator: Stupakov, Gennady
Partner: UNT Libraries Government Documents Department

A Theory for the Comparative RF Surface Fields at Destructive Breakdown for Various Metels

Description: By destructive breakdown we mean a breakdown event that results in surface melting over large areas on the iris tip region of an accelerator structure. The melting is the result of the formation of macroscopic areas of plasma in contact with the surface. The plasma bombards the surface with an intense ion current ({approx}10{sup 8} A/cm{sup 2}), which is equivalent to a pressure on the order of a thousand Atmospheres. A radial gradient in the pressure produces a ponderomotive force that causes molten copper to migrate away from the iris tip, resulting in a measurable change in the iris shape. This distortion in the iris shape in turn produces an error in the cell-to-cell phase shift of the accelerating wave with a consequent loss in synchronism with the electron beam and a reduction in the effective accelerating gradient. Assuming a long lifetime is desired for the structure, such breakdowns must be avoided or at least limited in number. The accelerating gradient at which these breakdowns begin to occur imposes, therefore, an absolute limit on an operationally attainable gradient. The destructive breakdown limit (DBL) on the accelerating gradient depends on a number of factors, such as the geometry of the irises and coupler, the accuracy of the cell-to-cell tuning (''field flatness''), and the properties of the metal used in the high E-field regions of the structure. In this note we consider only the question of the dependence of the DBL on the metal used in the high surface field areas of the structure. There are also various types of non-destructive breakdowns (NDB's) that occur during the ''processing'' period that, after the initial application of high power, is necessary to bring the gradient up to the desired operating level. During this period, as the input power and gradient are gradually increased, thousands ...
Date: March 20, 2006
Creator: Wilson, Perry
Partner: UNT Libraries Government Documents Department

High Power Disk Loaded Guide Load

Description: A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.
Date: February 22, 2006
Creator: Farkas, Z.D.
Partner: UNT Libraries Government Documents Department

Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

Description: The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical model was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function between thesubendocardial and transmural infarcts manifest themselves in myocardialSPECT images. The normal FE model produced strain distributions that wereconsistent with those reported in the ...
Date: August 2, 2006
Creator: Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui,Benjamin M.W. & Gullberg, Grant T.
Partner: UNT Libraries Government Documents Department

Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

Description: It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.
Date: February 10, 2006
Creator: Wang, S. & Cai, Y.
Partner: UNT Libraries Government Documents Department

On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

Description: We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.
Date: June 27, 2006
Creator: Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S. V.; Tajima, T. et al.
Partner: UNT Libraries Government Documents Department

Test Results of a Nb3Sn Wind/React 'Stress-Managed' BlockDipole

Description: A second phase of a highfield dipole technology developmenthas been tested. A Nb3Sn block-coil model dipole was fabricated, usingmagnetic mirror geometry and wind/react coil technology. The primaryobjective of this phase was to make a first experimental test of thestress-management strategy pioneered at Texas A&M. In this strategy ahigh-strength support matrix is integrated with the windings to interceptLorentz stress from the inner winding so that it does not accumulate inthe outer winding. The magnet attained a field that was consistent withshort sample limit on the first quench; there was no training. Thedecoupling of Lorentz stress between inner and outer windings wasvalidated. In ramp rate studies the magnet exhibited a remarkablerobustness in rapid ramping operation. It reached 85 percent of shortsample(ss) current even while ramping 2-3 T/s. This robustness isattributed to the orientation of the Rutherford cables parallel to thefield in the windings, instead of the transverse orientation thatcharacterizes common dipole designs. Test results are presented and thenext development phase plans are discussed.
Date: August 25, 2006
Creator: McInturff, A.; Bish, P.; Blackburn, R.; Diaczenko, N.; Elliott,T.; Hafalia Jr., R. et al.
Partner: UNT Libraries Government Documents Department

What product might a renewal of Heavy IonFusion development offerthat competes with methane microbes and hydrogen HTGRs

Description: In 1994 a Fusion Technology journal publication by Logan, Moir and Hoffman described how exploiting unusually-strong economy-of-scale for large (8 GWe-scale) multi-unit HIF plants sharing a driver and target factory among several low cost molten salt fusion chambers {at} < $40M per 2.4 GW fusion each (Fig. 1), could produce electricity below 3 cts/kWehr, even lower than similar multi-unit fission plants. The fusion electric plant could cost $12.5 B for 7.5 GWe and produce hydrogen fuel by electrolysis at prices competitive with gasoline-powered hybrids getting fuel from oil at $20$/bbl. At $60/bbl oil, the fusion plant can cost $35B and compete {at} 10% APR financing. Given massive and still-increasing world demand for transportation fuel even with oil climbing above $60/bbl, large HIF plants producing both low cost electricity and hydrogen could be more relevant to motivate new R&D funding for HIF development in the next few years. Three major challenges to get there: (1) NIF ignition in indirect drive geometry for liquid chambers, (2) a modular accelerator to enable a one-module IRE < $100 M, (3) compatible HIF target, driver and chamber allowing a small driver {at}< $500 M cost for a >100MWe net power DEMO. This scoping study, at a very preliminary conceptual level, attempts to identify how we might meet the last two great challenges taking advantage of several recent ideas and advances which motivate reconsideration of modular HIF drivers: >60X longitudinal compression of neutralized ion beams using a variable waveform induction module in NDCX down to 2 nanosecond bunches, the proof-of-principle demonstration of fast optical-gated solid state SiC switches by George Caporaso's group at LLNL (see George's RPIA06 paper), and recent work by Ed Lee, John Barnard and Hong Qin on methods for time-dependent correction of chromatic focusing errors in neutralized beams with up to 10 % ...
Date: April 19, 2006
Creator: Logan, Grant; Lee, Ed; Yu, Simon; Briggs, Dick; Barnard, John; Friedman, Alex et al.
Partner: UNT Libraries Government Documents Department

Where Water is Oxidized to Dioxygen: Structure of thePhotosynthetic Mn4Ca Cluster

Description: Oxidation of water to dioxygen is catalyzed withinphotosystem II (PSII) by a Mn4Ca cluster, the structure of which remainselusive. Polarized extended X-ray absorption fine structure (EXAFS)measurements on PSII single crystals constrain the Mn4Ca cluster geometryto a set of three similar high-resolution structures. Combining polarizedEXAFS and X-ray diffraction data, the cluster was placed within PSIItaking into account the overall trend of the electron density of themetal site and the putative ligands. The structure of the cluster fromthe present study is unlike either the 3.0 or 3.5 Angstrom resolutionX-ray structures, and other previously proposed models.
Date: May 31, 2006
Creator: Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek et al.
Partner: UNT Libraries Government Documents Department

Angular dependence of dissociative electron attachment topolyatomic molecules: application to the 2B1 metastable state of the H2Oand H2S anions

Description: The angular dependence of dissociative electron attachment (DEA) to polyatomic targets is formulated in the local complex potential model, under the assumption that the axial recoil approximation describes the dissociation dynamics. An additional approximation, which is found to be valid in the case of H2O but not in the case of H2S, makes it possible to describe the angular dependence of DEA solely from an analysis of the fixed-nuclei entrance amplitude, without carrying out nuclear dynamics calculations. For H2S, the final-vibrational-state-specific angular dependence of DEA is obtained by incorporating the variation of the angular dependence of the entrance amplitude with nuclear geometry into the nuclear dynamics. Scattering calculations using the complex Kohn method and, for H2S, full quantum calculations of the nuclear dynamics using the Multi-Configuration Time-Dependent Hartree method, are performed.
Date: January 12, 2006
Creator: Haxton, Daniel J.; McCurdy, C. William & Rescigno, Thomas N.
Partner: UNT Libraries Government Documents Department

Simulation studies of non-neutral plasma equilibria in anelectrostatic trap with magnetic mirror

Description: The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the mirror in the low field region, but also may be weakly trapped in part of in the high field region. The plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential vary along field lines. Some other simplifying assumptions were employed in order to analytically characterize the equilibrium; for example the interface region between the low and high field regions was not considered. The earlier results are confirmed in the present study, where two-dimensional particle-in-cell simulations are performed with the Warp code in a more realistic configuration with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range of temperatures and radial plasma sizes are considered. Particle tracking is used to identify populations of trapped and untrapped particles. The present study also shows that it is possible to obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses the inherent numerical collisionality as a proxy for physical collisions.
Date: June 1, 2006
Creator: Gomberoff, K.; Fajans, J.; Wurtele, J.; Friedman, A.; Grote,D.P.; Cohen, R.H. et al.
Partner: UNT Libraries Government Documents Department

Hydromechanical modeling of pulse tests that measure both fluidpressure and fracture-normal displacement of the Coaraze Laboratory site,France

Description: In situ fracture mechanical deformation and fluid flowinteractions are investigated through a series of hydraulic pulseinjection tests, using specialized borehole equipment that cansimultaneously measure fluid pressure and fracture displacements. Thetests were conducted in two horizontal boreholes spaced one meter apartvertically and intersecting a near-vertical highly permeable faultlocated within a shallow fractured carbonate rock. The field data wereevaluated by conducting a series of coupled hydromechanical numericalanalyses, using both distinct-element and finite-element modelingtechniques and both two- and three-dimensional model representations thatcan incorporate various complexities in fracture network geometry. Oneunique feature of these pulse injection experiments is that the entiretest cycle, both the initial pressure increase and subsequent pressurefall-off, is carefully monitored and used for the evaluation of the insitu hydromechanical behavior. Field test data are evaluated by plottingfracture normal displacement as a function of fluid pressure, measured atthe same borehole. The resulting normal displacement-versus-pressurecurves show a characteristic loop, in which the paths for loading(pressure increase) and unloading (pressure decrease) are different. Bymatching this characteristic loop behavior, the fracture normal stiffnessand an equivalent stiffness (Young's modulus) of the surrounding rockmass can be back-calculated. Evaluation of the field tests by couplednumerical hydromechanical modeling shows that initial fracture hydraulicaperture and normal stiffness vary by a factor of 2 to 3 for the twomonitoring points within the same fracture plane. Moreover, the analysesshow that hydraulic aperture and the normal stiffness of the pulse-testedfracture, the stiffness of surrounding rock matrix, and the propertiesand geometry of the surrounding fracture network significantly affectcoupled hydromechanical responses during the pulse injection test. Morespecifically, the pressure-increase path of the normaldisplacement-versus-pressure curve is highly dependent on thehydromechanical parameters of the tested fracture and the stiffness ofthe matrix near the injection point, whereas the pressure-decrease pathis highly influenced by mechanical processes within a larger portion ofthe surrounding fractured rock.
Date: April 22, 2006
Creator: Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C-F. & Thoraval, A.
Partner: UNT Libraries Government Documents Department

TEM Studies of Carbon Coated LiFePO4 after Charge DischargeCycling

Description: Carbon coating has proven to be a successful approach toimprove the rate capability of LiFePO4 used in rechargeable Li-ionbatteries. Investigations of the microstructure of carbon coated LiFePO4after charge discharge cycling shows that the carbon surface layerremains intact over 100 cycles. We find micro cracks in the cycledmaterial that extend parallel to low indexed lattice planes. Ourobservations differ from observations made by other authors. However thedifferences between the orientations of crack surfaces in both studiescan be reconciled considering the location of weak bonds in the unit celland specimen geometry as well as elastic stress fields ofdislocation.
Date: November 30, 2006
Creator: Gabrisch, H.; Wilcox, J. & Doeff, M.
Partner: UNT Libraries Government Documents Department

Obtaining the Bidirectional Transfer Distribution Function ofIsotropically Scattering Materials Using an Integrating Sphere

Description: This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.
Date: October 19, 2006
Creator: Jonsson, Jacob C. & Branden, Henrik
Partner: UNT Libraries Government Documents Department

Simple Models and Methods for Estimating the UltrasonicReflectivity of Spot Welds

Description: This paper describes models and methods for estimating theacoustic reflectivity of the welded interfaces between spot-welded sheetsfrom normal-incidence pulse-echo ultrasound signals. The simple geometryof the problem allows an abstraction that does not resort to complex waveequations. Instead, a reflectivity model predicts the timing andamplitude of the echoes arriving at the probe. This reflectivity model isnested in a signal processing model; recovering reflectivity firstrequires deconvolution to recover discrete impulses from the probesignal, then processing these with the reflectivity model. Reflectivitymaps of spot welds generated with this model show promise for predictingweld quality.
Date: October 15, 2006
Creator: Davis, William B.
Partner: UNT Libraries Government Documents Department

Pumpernickel Valley Geothermal Project Thermal Gradient Wells

Description: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, ...
Date: January 1, 2006
Creator: Szybinski, Z. Adam
Partner: UNT Libraries Government Documents Department