7 Matching Results

Search Results

Advanced search parameters have been applied.

Hydrogeologic Characterization of the U-3bl Collapse Zone

Description: The U-3bl collapse crater was formed by an underground nuclear test in August 1962. This crater and the adjoining U-3ax crater were subsequently developed and used as a bulk low-level radioactive waste disposal cell (U-3ax/bl), which is part of the Area 3 Radioactive Waste Management Site at the Nevada Test Site (NTS). Various investigations have been conducted to assess the hydrogeologic characteristics and properties in the vicinity of the U-3ax/bl waste disposal cell. This report presents data from one of these investigations, conducted in 1996. Also included in this report is a review of pertinent nuclear testing records, which shows that the testing operations and hydrogeologic setting of the U-3ax/bl site were typical for the period and location of testing. Borehole U-3bl-D2 is a 45-degree-angle hole drilled from the edge of the crater under the waste cell to intercept the U-3bl collapse zone, the disturbed alluvium between the crater (surface collapse sink) and the nuclear test cavity. A casing-advance system with an air percussion hammer was used to drill the borehole, and air was used as the drilling fluid. Properties of the U-3bl crater collapse zone were determined from cores collected within the interval, 42.1 to 96.6 meters (138 to 317 feet) below the ground surface. Selected core samples were analyzed for particle density, particle size, bulk density, water retention, hydraulic conductivity, water content, water potential, chloride, carbonate, stable isotopes, and tritium. Physical and hydraulic properties were typical of alluvial valley sediments at the NTS. No visual evidence of preferential pathways for water transport was observed in the core samples. Soil parameters showed no trends with depth. Volumetric water content values ranged from 0.08 to 0.20 cubic meters per cubic meter, and tended to increase with depth. Water-retention relations were typical for soils of similar texture. Water potentials ranged from ...
Date: September 1, 2006
Creator: Services, NSTec Geotechnical
Partner: UNT Libraries Government Documents Department

Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the Savannah River Site.

Description: USDA Forest Service Proceedings RMRS-P-41. pp 351-366. Abstract—The Savannah River Site is a Department of Energy Nuclear Defense Facility and a National Environmental Research Park located in the upper coastal plain of South Carolina. Prescribed burning is conducted on 15,000 to 20,000 ac annually. We modifi ed standard forest inventory methods to incorporate a complete assessment of fuel components on 622 plots, assessing coarse woody debris, ladder fuels, and the litter and duff layers. Because of deficiencies in south-wide data on litter-duff bulk densities, which are the fuels most often consumed in prescribed fires, we developed new bulk density relationships. Total surface fuel loading across the landscape ranged from 0.8 to 48.7 tons/ac. The variables basal area, stand age, and site index were important in accounting for variability in ladder fuel, coarse woody debris, and litter-duff for pine types. For a given pine stand condition, litter-duff loading decreased in direct proportion to the number of burns in the preceding thirty years. Ladder fuels for loblolly and longleaf increased in direct proportion to the years since the last prescribed burn. The pattern of fuel loading on the SRS reflects stand dynamics, stand management and fire management. It is suggested that the Forest Inventory and Analysis Program can easily modify sampling protocols to incorporate collection of fuels data.
Date: October 1, 2006
Creator: Parresol, Bernard R.; Shea, Dan & Ottmar, Roger.
Partner: UNT Libraries Government Documents Department

Carbon Sequestration on Surface Mine Lands

Description: A major effort this quarter was to inventory all the planted areas to evaluate the diameter and height growth as well as determine survival rates. Soil bulk density and compaction continue to be evaluated on all the areas to determine the effects on tree growth and survival. The hydrologic quantity and quality are continuously monitored and quantified. Much effort was also expended in preparing technical presentations for professional meeting and for the preparation of the final project report.
Date: May 2, 2006
Creator: Graves, Donald H.; Barton, Christopher; Sweigard, Richard & Warner, Richard
Partner: UNT Libraries Government Documents Department

CHARACTERIZATION OF DAMAGED MATERIALS

Description: Thermal damage experiments were conducted on LX-04, LX-10, and LX-17 at high temperatures. Both pristine and damaged samples were characterized for their material properties. A pycnometer was used to determine sample true density and porosity. Gas permeability was measured in a newly procured system (diffusion permeameter). Burn rate was measured in the LLNL strand burner. Weight losses upon thermal exposure were insignificant. Damaged pressed parts expanded, resulting in a reduction of bulk density by up to 10%. Both gas permeabilities and burn rates of the damaged samples increased by several orders of magnitude due to higher porosity and lower density. Moduli of the damaged materials decreased significantly, an indication that the materials became weaker mechanically. Damaged materials were more sensitive to shock initiation at high temperatures. No significant sensitization was observed when the damaged samples were tested at room temperature.
Date: June 23, 2006
Creator: Hsu, P C; Dehaven, M; McClelland, M; Chidester, S & Maienschein, J L
Partner: UNT Libraries Government Documents Department

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

Description: This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.
Date: March 31, 2006
Creator: Green, David A.; Nelson, Thomas O.; Turk, Brian S.; Box, Paul D. & Gupta, Raghubir P.
Partner: UNT Libraries Government Documents Department

Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

Description: Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.
Date: July 1, 2006
Creator: Wright, Christopher T
Partner: UNT Libraries Government Documents Department

Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

Description: Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is ...
Date: December 31, 2006
Creator: Wu, Milton & Yuran, Paul
Partner: UNT Libraries Government Documents Department