4,320 Matching Results

Search Results

Advanced search parameters have been applied.

Some novel design features of the LBL metal vapor vacuum arc ion sources

Description: The family of MEVVA (metal vapor vacuum arc) high current metal ion sources developed at LBL over the past several years has grown to include a number of different source versions with a wide range of some of the design and operational parameters. The MicroMEVVA source is a particularly compact version, about 2 cm diameter and 10 cm long, while the MEVVA IV weighs some 30 kG. MEVVAs IV and V incorporate multiple cathode assemblies (16 and 18 separate cathodes, respectively), and the operating cathode can be switched rapidly and without down-time. The new MEVVA V embodiment is quite compact considering its broad beam (10 cm), high voltage (100 kV) and multiple cathode features. The large-area extractor grids used in the MEVVA V were fabricated using a particularly simple technique, and they are clamped into position and so can be changed simply and quickly. The electrical system used to drive the arc is particularly simple and incorporates several attractive features. In this paper we review and describe a number of the mechanical and electrical design features that have been developed for these sources. 9 refs., 5 figs.
Date: June 1, 1989
Creator: MacGill, R.A.; Brown, I.G. & Galvin, J.E.
Partner: UNT Libraries Government Documents Department

Calorimetric measurements of the ''equivalent series resistance'' of low-loss, high repetition rate pulse discharge capacitors

Description: In high repetition rate pulsed circuits, component losses are a major design consideration. Accurate means of calculating the dissipation loss is essential for determining efficiency and in designing cooling systems for removal of associated heat. In high voltage systems, dielectric loss can be a major contributor to power dissipation. Total energy dissipation in a capacitor is the sum of dielectric, tab, corona, lead connections, and skin effect losses. Dielectric loss is also dependent on temperature, voltage, and frequency which adds to the complexity of determining an accurate value. The total loss component can be described by the ''equivalent series resistance'' or ESR. In this paper we will review the most common electrical methods used to measure the ESR and particulars that must be considered with these techniques. Finally we will describe calorimetric methods of ESR determination that are accurate regardless of frequency and voltage and the ESR values of a variety of commercially available pulsed discharge capacitors.
Date: January 1, 1986
Creator: McDuff, G.G. & Rust, K.R.
Partner: UNT Libraries Government Documents Department

Geometry, contact, surface, and optical developments for photoconductive power switches

Description: Photoconductive Power Switches (PCPSs) have the advantages of precise control, extremely fast closure times, extremely low inductances and scalability to very high voltages and currents. PCPSs have these advantages because the size or power of the switch is not related to its closure time. The closure time is determined by the external optical source that uniformly illuminates the PCPS between the electrodes. Because carriers are generated uniformly between the electrodes at the desired density, current can flow through the switch immediately without waiting for carrier transient delays. The operating voltage is determined by the switch length l, and the operating current is determined by the switch width w. The electrodes can be made as wide as desired so that the inductance can be extremely low, or the area available for heat removal can be increased and the entire switch brough into conduction at the same instant if the same optical pulse and path length are used. This paper describes recent research at Los Alamos that has improved PCPS contact fabrication technology, has developed a simple optical control illumination system using fiber optics and rectangular optics, and has improved photoconductor surface fabrication methods and processes for high electric field operation.
Date: January 1, 1984
Creator: Nunnally, W.C.; Hammond, R.B. & Wagner, R.S.
Partner: UNT Libraries Government Documents Department

Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

Description: This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project ...
Date: June 30, 2009
Creator: O'Neill, Patrick
Partner: UNT Libraries Government Documents Department

Project W-314 241-AN-B valve pit upgrade acceptance for beneficial use

Description: This report identifies the responsibilities and requirements, applicable to the 241-AN-B Valve Pit Upgrades portion of Project W-314, for Acceptance for Beneficial Use in accordance with HNF-IP-0842, Vol IV, Sec 3.12. At project turnover, the end user accepts the affected Structures, Systems, and Components (SSCs) for beneficial use. This checklist is used to help the end user ensure that all documentation, training, and testing requirements are met prior to turnover. This checklist specifically identifies those items related to the upgrading of the 241-AN-B valve pit. The upgrades include: the installation of jumper/valve manifolds with position sensors, replacement pit leak detection systems, construction of replacement cover blocks, and electrical upgrades to support the instrumentation upgrades.
Date: July 21, 1999
Creator: HAMMERS, J.S.
Partner: UNT Libraries Government Documents Department

Anatomy of power system blackouts and preventive strategies by rational supervision and control of protection systems

Description: This report establishes the concept of hidden failures in relays and associated devices used for the protection of electric power systems. A hidden failure is a defect such as a component failure, inappropriate setting or incorrect external connection that remains undetected until some other system event causes the hidden failure to initiate a cascading outage. Associated with the study of hidden failures, this report examines the impact such defects might have by defining regions of vulnerability. A region of vulnerability is the area of the system in which a hidden failure will be activated. To determine such areas we have established criteria associated with load flows and steady-state stability, such as lack of convergence, and employed a technique known as importance sampling in which the simulation is done with the probabilities altered so that the rare event happens more frequently. Our purpose is to provide a framework for further research into relay vulnerability, possibly using adaptive techniques to eliminate hidden defects. We believe control strategies can be developed to prevent cascading normal operations from developing into severe outages by extending the present criteria using steady-state stability and load flow studies into the area of transient stability, and further research into importance sampling would provide significant benefits in evaluating corrective actions.
Date: January 1, 1995
Creator: Phadke, A.G.; Horowitz, S.H. & Thorp, J.S.
Partner: UNT Libraries Government Documents Department

PUREX new substation ATR

Description: This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience.
Date: May 12, 1997
Creator: Nelson, D.E.
Partner: UNT Libraries Government Documents Department

City of Phildelphia: Light emitting diodes for traffic signal displays

Description: This project investigated the feasibility of using light emitting diodes (LEDs) for red traffic signals in a demonstration program at 27 signalized intersections in the City of Philadelphia. LED traffic signals have the potential to achieve significant savings over standard incandescent signals in terms of energy usage and costs, signal relamping costs, signal system maintenance costs, tort liability, and environmental impact. Based on successful experience with the demonstration program, the City of Philadelphia is currently developing funding for the conversion of all existing red incandescent traffic signals at approximately 2,700 intersections to LED signals. This program is expected to cost approximately $4.0 million and save about $850,000 annually in energy costs. During late 1993 and early 1994, 212 red LED traffic signals (134 8-inch signals and 78 12-inch signals) were installed at 27 intersections in Philadelphia. The first group of 93 signals were installed at 13 prototypical intersections throughout the City. The remaining group of signals were installed on a contiguous route in West Philadelphia consisting of standard incandescent signals and LED signals interspersed in a random pattern.
Date: December 1, 1995
Partner: UNT Libraries Government Documents Department

Superconductivity for electric systems program plan, FY 1996--FY 2000

Description: This describes a comprehensive, integrated approach for the development of HTS (high-temperature superconductivity) technology for cost-effective use in electric power applications. This approach supports the program`s mission: to develop the technology that could lead to industrial commercialization of HTS electric power applications, such as fault-current limiters, motors, generators, transmission cables, superinductors, and superconducting energy storage. The vision is that, by 2010, the US power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition; and in US, the power grid will gain increased efficiency and stability by incorporating many kinds of HTS devices. After an overview and a discussion of the program plan (wires, systems technology, partnership initiative), this document discusses technology status, stakeholders, and the role of US DOE.
Date: March 1, 1996
Partner: UNT Libraries Government Documents Department

Developing a dynamic envelope/lighting control system with field measurements

Description: The feasibility of an intelligent venetian blind/lighting control system was tested in a 1:3 scale model outdoors under variable sun and sky conditions. The control algorithm, block direct sun and meet the design workplane illuminance level, was implemented using commercially available and custom designed blind and lighting systems hardware. While blocking direct sunlight, the blinds were properly controlled to maintain the design workplane illuminance within a tolerance of -10%, +25% when there was sufficient daylight. When daylight levels alone were inadequate, the electric lighting control system maintained the design workplane illuminance. The electric lighting could be turned off if a user-specified time period at minimum power was exceeded. Lighting energy savings of 51-71% (southwest) and 37-75% (south) was attained for the period from 8:00 to 17:00 on clear sunny days, compared to a fixed, partially closed blind with the same lighting system. Practical details for implementation and commissioning are discussed. The impact of control variations, such as profile angle, time step interval, and control area, on energy demand is investigated.
Date: May 1, 1996
Creator: DiBartolomeo, D.L.; Lee, E.S.; Rubinstein, F.M. & Selkowitz, S.E.
Partner: UNT Libraries Government Documents Department

High temperature superconductivity: The products and their benefits

Description: Numerous qualitative studies have discussed, in detail, the benefits projected from the commercialization of HTS systems; however, few are available with quantitative predictions of market penetration and resultant benefits. This report attempts to quantify those benefits, as a function of time, by examining five key classes of candidate HTS electrical equipment, and projecting market entry and capture based on historical market entry o technologies considered analogous to HTS. Any such projection is a judgment, based on experience and available data, and the analyses in this report fall into that category. The five classes of equipment examined are electric motors, transformers, generators, underground cable, and fault current limiters. In each of these classes, major international programs are now underway to develop and commercialize HTS equipment in a time frame from the present to the year 2020. Based on technology status and perceived market advantages as determined from the references, market entry dates were projected followed by market penetration predictions. The earliest equipment to achieve commercialization is predicted to be fault current limiters, predicted for market entry in the 2003--2004 time period. Transformers and cable are projected for entry in 2005 followed by electric motors in 2006. The final market entry will be by generators, predicted for commercialization in 2011.
Date: July 1, 1998
Creator: Lawrence, L.R. Jr.; Cox, C. & Broman, D.
Partner: UNT Libraries Government Documents Department

Tester status report: October-December 1978

Description: This report details the status of the testers which provide the testing support of timers, actuators, detonators, firing sets, transducers, isolators, and pyrospacers during the time period of October through December 1978.
Date: February 9, 1979
Creator: Draut, C.F.
Partner: UNT Libraries Government Documents Department

Measurements of the effects of smoke on active circuits

Description: Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The US Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformally coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 Mohm) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the contacts were corroded. However, the change was very small (< 2%). The stray capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems.
Date: January 1, 1998
Creator: Tanaka, T. J.
Partner: UNT Libraries Government Documents Department

National standards and code compliance for electrical equipment and instruments installed in hazardous locations for the cone penetrometer

Description: The cone penetrometer is designed to measure the material properties of waste tank contents at the Hanford Site. The penetrometer system consists of a skid-mounted assembly, a penetrometer assembly (composed of a guide tube and a push rod), an active neutron moisture measurement probe, decontamination unit, and a support trailer containing a diesel-engine-driven hydraulic pump and a generator. The skid-mounted assembly is about 8 feet wide by 23 feet long and 15 feet high. Its nominal weight is about 40,000 pounds with the provisions to add up to 54,500 pounds of additional ballast. This document describes the cone penetrometer electrical instruments and how it complies with national standards.
Date: March 1, 1996
Creator: Bussell, J.H.
Partner: UNT Libraries Government Documents Department

Modular photonic power and VCSEL-based data links for aerospace and military applications

Description: If photonic data and power transfer links are constructed in a modular fashion, they can be easily adapted into various forms to meet a wide range of needs for aerospace and military applications. The performance specifications associated with these needs can vary widely according to application. Alignment tolerance needs also tend to vary greatly, as can requirements on power consumption. An example of a modular photonic data and/or power transfer link that can be applied to military and aerospace needs is presented. In this approach, a link is designed for low (<10 kb/s) data rates, ultra-low electrical power consumption, large alignment tolerance, and power transfer to provide complete electrical shielding in a remote module that might be found in a military or aerospace application.
Date: February 1, 1997
Creator: Carson, R. F.
Partner: UNT Libraries Government Documents Department

LDRD report: Smoke effects on electrical equipment

Description: Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.
Date: March 1, 2000
Creator: TANAKA,TINA J.; BAYNES JR.,EDWARD E.; NOWLEN,STEVEN P.; BROCKMANN,JOHN E.; GRITZO,LOUIS A. & SHADDIX,CHRISTOPHER R.
Partner: UNT Libraries Government Documents Department

Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

Description: The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during the Workshop will be used by the DOE Superconductivity Program for Electric Systems in preparing subsequent planning and strategy documents such as a Cryogenic Technology Development Roadmap.
Date: January 1, 2000
Creator: Energetics, Inc.
Partner: UNT Libraries Government Documents Department

Final report on LDRD project: Simulation/optimization tools for system variability analysis

Description: >This work was conducted during FY98 (Proposal Number 98-0036) and FY99 (Proposal Number 99-0818) under the auspices of the Sandia National Laboratories Laboratory-Directed Research and Development (LDRD) program. Electrical simulation typically treats a single data point in the very large input space of component properties. For electrical simulation to reach its full potential as a design tool, it must be able to address the unavoidable variability and uncertainty in component properties. Component viability is strongly related to the design margin (and reliability) of the end product. During the course of this project, both tools and methodologies were developed to enable analysis of variability in the context of electrical simulation tools. Two avenues to link relevant tools were also developed, and the resultant toolset was applied to a major component.
Date: October 1, 1999
Creator: Bierbaum, R. L.; Billau, R. F.; Campbell, J. E.; Marx, K. D.; Sikorski, R. J.; Thompson, B. M. et al.
Partner: UNT Libraries Government Documents Department

Superconducting technology program: Sandia 1995 annual report

Description: Sandia`s STP program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) process development and characterization of thallium-based high-temperature superconducting closed system wire and tape; (2) investigation of the synthesis and processing of thallium-based thick films using two-zone processing; and (3) cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY95 in each of these areas.
Date: March 1, 1996
Creator: Roth, E.P.
Partner: UNT Libraries Government Documents Department

Aging of d-Limonene-cleaned assemblies. Final report

Description: The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.
Date: August 1, 1995
Creator: Somer, T. A.
Partner: UNT Libraries Government Documents Department

FEDERAL FACILITY COMPLIANCE AGREEMENT (FFCA) STACK ISOLATION PROJECT FUNCTIONS & REQUIREMENTS

Description: This document delineates the functions and requirements for the FFCA Stack Isolation Project for the 244-A, 244-BX, 244-5, and 244-TX DCRTs. The isolation of each ventilation system and stack includes the electrical, instrumentation, and mechanical isolation of the ventilation system and the installation of primary and annulus breather filters to provide passive ventilation to meet the FFCA requirements.
Date: December 16, 2003
Creator: TRANBARGER, R.K.
Partner: UNT Libraries Government Documents Department