267 Matching Results

Search Results

Advanced search parameters have been applied.

A Thermodynamic Model for Acetate, Lactate, and Oxalate Complexation with Am(III), Th(IV), Np(V), and U(VI) Valid to High Ionic Strength

Description: The organic ligands acetate, lactate, oxalate and EDTA have been identified as components of wastes targeted for disposal in the Waste Isolation Pilot Plant (WIPP) located in Southeastern New Mexico. The presence of these ligands is of concern because complexation of the actinides with the ligands may increase dissolved actinide concentrations and impact chemical retardation during transport. The current work considers the complexation of Am(III), Th (IV), Np(V), and U(W) with two of the organic ligands, acetate and lactate, in NaCl media from dilute through high concentration. A thermodynamic model for actinide complexation with the organic ligands has been developed based on the Pitzer activity coefficient formalism and the Harvie-Moller-Weare, Felmy-Weare database for describing brine evaporite systems. The model was parameterized using first apparent stability constant data from the literature. Because of complexation of other metal ions (Fe, Mg, Ni, Pb, etc.) present in the WIPP disposal room with the organic ligands, preliminary results from model calculations indicate the organic ligands do not significantly increase dissolved actinide concentrations.
Date: January 15, 1999
Creator: Bynaum, R.V.; Free, S.J. & Moore, R.C.
Partner: UNT Libraries Government Documents Department

The role of catalyst precursor anions in coal gasification. Final technical report, September 1991--June 1994

Description: The utilization of coal is currently limited by several factors, including the environmental impacts of coal use and the lack of cost-effective technologies to convert coal into useful gaseous and liquid products. Several catalysts have been evaluated for coal gasification and liquefaction. The activities of the catalysts are dependent on many factors such as the method of catalyst addition to the coal and the catalyst precursor type. Since catalyst addition to coal is frequently conducted in aqueous solution, the surface chemistry of colloidal coal particles will be expected to exert an influence on catalyst uptake. However, the effects of the various coal gasification catalyst precursors on the interfacial properties of coal during catalyst loading from solution has received little attention. The aim of this study is to ascertain the influence of the metal salts (i): calcium acetate (Ca(OOCCH{sub 3}){sub 2}), calcium chloride (CaCl{sub 2}) or calcium nitrate (Ca(NO{sub 3}){sub 2}) and (ii): potassium acetate (KOOCCH{sub 3}), potassium chloride (KCl), potassium nitrate (KNO{sub 3}), potassium carbonate (K{sub 2}CO{sub 3}) and potassium sulfate (K{sub 2}SO{sub 4}) on the electrokinetic and adsorptive properties of coal and determine the relationship, if any, between coal surface electrokinetic properties, and catalyst loading and eventually its effects on the reactivities of coal chars.
Date: January 1, 1995
Creator: Abotsi, G.M.K.
Partner: UNT Libraries Government Documents Department

Control of toxic metallic emissions formed during the combustion of Ohio coals. Final report, September 1, 1993--August 31, 1994

Description: The objective of the project was to characterize metallic emissions from representative coals and develop strategies for their control. Though metallic emissions from coal combustors have been extensively studied, more studies need to be performed to better characterize the interaction of various species which is required for the selection and design of sorbents for effective control of these emissions. Some coals are rich in sulfur, and utilities using these coals will have to use some form of Flue Gas Desulfurization (FGD). A technique for FGD is the use of calcium based sorbents, and the degree of metals capture of these sorbents under different conditions will be researched. The objective of the first year of the study was to understand the evolution of metallic aerosol size distributions and the capture characteristics of various sorbents. Also, the metallic emissions resulting from the combustion of two seams of Ohio coals were to be characterized. Studies on the evolution of the metallic aerosol size distributions have been completed and the use of silicon and calcium based sorbents for capture of lead species has been examined. Co-injection of metallic compounds along with organometallic silicon indicated a high degree of capture of lead in a certain temperature regime. Preliminary results with calcium based sorbents also indicate capture of metallic species. To gain a further understanding of the capture processes, in situ optical diagnostic studies were performed in collaboration with researchers at the National Institute of Standards and Technology. Spectroscopic studies (laser induced fluorescence coupled with particle scattering) were performed to help understand the mechanisms of metallic species capture.
Date: February 1, 1995
Creator: Biswas, P.; Owens, T.M. & Wu, Chang-Yu
Partner: UNT Libraries Government Documents Department

Chemically Prepared Lead Magnesium Niobate Dielectrics

Description: A chemical solution powder synthesis technique has been developed that produces fine uniform powders of lead magnesium niobate (PMN) with 60 to 80 nm crystallite size. The synthesis technique was based on the dissolution of lead acetate and alkoxide precursors in acetic acid followed by precipitation with oxalic acid/propanol solutions. Lead magnesium niobate ceramics fabricated from these chemically derived powders had smaller, more uniform grain size and higher dielectric constants than ceramics fabricated from mixed oxide powders that were processed under similar thermal conditions.
Date: January 1, 1998
Creator: Tuttle, B.A.; Voigt, J.A.; Sipola, D.L.; Olson, W.R. & Goy, D.M.
Partner: UNT Libraries Government Documents Department

Characterization of the interaction of uranyl ions with humic acids by x-ray absorption spectroscopy

Description: Humic substances are present throughout the environment in soil and natural water. They are organic macromolecules with a variable structural formula, molecular weight, and a wide variety of functional groups depending on their origin. In natural waters, humic substances represent the main component of the {open_quotes}dissolved organic carbon{close_quotes} (DOC). The DOC may vary considerably from 1 mg/L at sea water surfaces to 50 mg/L at the surface in dark water swamps. There is strong evidence that all actinides form complexes with humic substances in natural waters. Therefore, humic substances can play an important role in the environmental migration of radionuclides by enhancing their transport. Retardation through humic substance interaction may be also possible due to formation of precipitating agglomerates. For remediation and restoration of contaminated environmental sites and risk assessment of future nuclear waste repositories, it is important to improve the predictive capabilities for radionuclide migration through a better understanding of the interaction of radionuclides with humic substances.
Date: November 1, 1995
Creator: Reich, T.; Denecke, M.A. & Pompe, S.
Partner: UNT Libraries Government Documents Department

Base hydrolysis kinetics of HMX-based explosives using sodium carbonate

Description: Sodium carbonate has been identified as a possible hydrolysis reagent for decomposing HMX-based explosives to water soluble, non-energetic products. In this study, the reaction kinetics of sodium carbonate hydrolysis are examined and a reaction model is developed. The rate of hydrolysis is reaction rate limited, opposed to mass transfer limited, up to 150{degrees}C. Greater than 99% of the explosive solids in powder form are destroyed in less than 10 minutes at a temperature of 150{degrees}C. The primary products from sodium carbonate hydrolysis are sodium nitrite, formate, nitrate, acetate, glycolate, hexamine, nitrogen gas, nitrous oxide, and ammonia.
Date: July 1, 1996
Creator: Bishop, R.L.; Skidmore, C.; Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Uher, K.J. et al.
Partner: UNT Libraries Government Documents Department

Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

Description: Trace-metal and/or radionuclide bioremediation schemes require that specific redox conditions be achieved at given zones of an aquifer. Tools are therefore needed to identify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer. Dissolved hydrogen (H2) concentrations have been shown to correlate with specific TEAPs during bioremediation in an aquifer. Theoretical analysis has shown that these steady-state H2 levels are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, with H2 concentrations increasing as each successive TEAP yields less energy for bacterial growth. The objective of this research was to determine if H2 can still be used as an indicator of TEAPs during a uranium bioremediation scheme where an organic substrate is injected into the subsurface and organisms may consume H2 and carbon simultaneously. In addition, the effect of iron bioavailability on H2 concentrations during iron reduction was observed. The first phase of research determined the effect of a competing electron donor (acetate) on the kinetics of H2 utilization by Geobacter sulfurreducens in batch cultures under iron reducing conditions. The results indicate that, though the Monod kinetic coefficients describing the rate of H2 utilization under iron-reducing conditions correlate energetically with the coefficients found in previous experiments under methanogenic and sulfate-reducing conditions, conventionally measured growth kinetics do not predict the steady state H2 levels typical for each TEAP. In addition, with acetate and H2 as simultaneous electron donors, there is slight inhibition between the two electron donors for G. sulfurreducens, and this can be modeled through competitive inhibition terms in the classic Monod formulation, resulting in slightly higher H2 concentrations under steady state conditions in the presence of acetate. This dual-donor model indicates that the steady state H2 concentration in the presence of an organic as electron donor is not only dependent on the ...
Date: September 27, 2005
Creator: Peter R. Jaffe, John Komlos, Derick Brown
Partner: UNT Libraries Government Documents Department

In Silico Modeling of Geobacter Species.

Description: This project employed a combination of in silico modeling and physiological studies to begin the construction of models that could predict the activity of Geobacter species under different environmental conditions. A major accomplishment of the project was the development of the first genome-based models of organisms known environmental relevance. This included the modeling of two Geobacter species and two species of Pelobacter. Construction of these models required increased sophistication in the annotation of the original draft genomes as well as collection of physiological data on growth yields, cell composition, and metabolic reactions. Biochemical studies were conducted to determine whether proposed enzymatic reactions were in fact expressed. During this process we developed an Automodel Pipeline process to accelerate future model development of other environmentally relevant organisms by using bioinformatics techniques to leverage predicted protein sequences and the Genomatica database containing a collection of well-curated metabolic models. The Automodel Pipeline was also used for iterative updating of the primary Geobacter model of G. sulfurreducens to expand metabolic functions or to add alternative pathways. Although each iteration of the model does not lead to another publication, it is an invaluable resource for hypothesis development and evaluation of experimental data. In order to develop a more accurate G. sulfurreducens model, a series of physiological studies that could be analyzed in the context of the model were carried out. For example, previous field trials of in situ uranium bioremediation demonstrated that Geobacter species face an excess of electron donor and a limitation of electron acceptor near the point of acetate injection into the groundwater. Therefore, a model-based analysis of electron acceptor limitation physiology was conducted and model predictions were compared with growth observed in chemostats. Iterative studies resulted in the model accurately predicting acetate oxidation and electron acceptor reduction. The model also predicted that G. ...
Date: January 29, 2008
Creator: Lovley, Derek, R.
Partner: UNT Libraries Government Documents Department

PRELIMINARY REPORT ON EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

Description: Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. Studies are ongoing to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. The next phase of testing for this work will focus on the following down selected eluants: Ammonium carbonate, ammonium acetate, calcium acetate, magnesium acetate, nitric acid, and ammonium hydroxide. The next testing phase is a confirmation of the elution ability of the selected eluants. It will mimic a typical sRF cesium ion exchange process i.e., sorption or loading, caustic wash, water rinse, and elution via batch contact sorption and quasi column caustic wash/water rinse/elution. Due to corrosion concerns, calcium acetate and magnesium acetate will ...
Date: September 1, 2010
Creator: Adu-Wusu, K. & Pennebaker, F.
Partner: UNT Libraries Government Documents Department

Complexation study of NpO{sub 2}{sup +} and UO{sub 2}{sup 2+} ions with several organic ligands in aqueous solutions of high ionic strength

Description: The acid dissociation constants, pK{sub a}, and the stability constants for NpO{sub 2}{sup +} and UO{sub 2}{sup 2+} have been measured for certain organic ligands [acetate, {alpha}-hydroxyisobutyrate, lactate, ascorbate, oxalate, citrate, EDTA, 8-hydroxyquinoline, 1, 10-phenanthroline, and thenoyltrifluoroacetone] in 5 m (NaCl) ionic strength solution. The pK{sub a} values were determined by potentiometry or spectrometry. These methods, as well as solvent extraction with {sup 233}U and {sup 237}Np radiotracers, were used to measure the stability constants of the 1:1 and 1:2 complexes of dioxo cations. These constants were used to estimate the concentrations required to result in 10 % competition with hydrolysis in the 5 m NaCl solution. Such estimates are of value in assessing the solubility from radioactive waste of AnO{sub 2}{sup +} and AnO{sub 2}{sup 2+} in brine solutions in contact with nuclear waste in a salt-bed repository.
Date: September 1, 1995
Creator: Borkowski, M.; Lis, S. & Choppin, G.R.
Partner: UNT Libraries Government Documents Department

Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

Description: One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophism to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for a comprehensive, system biology level analysis of a metal-reducing microbial community.
Date: May 17, 2010
Creator: Elias, Dwayne; Schadt, Christopher; Miller, Lance; Phelps, Tommy; Brown, S. D.; Arkin, Adam et al.
Partner: UNT Libraries Government Documents Department

Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

Description: The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and ...
Date: May 1, 2010
Creator: Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D. et al.
Partner: UNT Libraries Government Documents Department

SBIR Phase I final Report

Description: The approach that we propose here in this SBIR proposal is a modified water electrolysis cell. In conventional water electrolysis the H2O is split into electrons, protons, and oxygen gas at the anode electrode. The electrons travel through an external power source and the protons travel through an electrolyte membrane to the cathode where they recombine to form hydrogen gas. The power source requires a minimum of 1.23 V to overcome the potential difference of the electrodes for the splitting of water. In contrast in our approach proposed here, instead of splitting water we are using acetate in wastewater and bacteria to oxidize the acetate into electrons and protons at the anode surface. The microbes release the electrons to the anode and the resulting protons move to the cathode electrode through the proton exchange membrane as described above and recombine to form hydrogen gas. The advantage here is that the required potential is now on the order of 0.25 to 0.8 V, and a considerable savings in electricity is realized to produce the same amount of hydrogen while at the same time removing organic matter from wastewater streams. Significant improvements in current density needs to be made in order for this type of technology to be economically viable
Date: July 7, 2009
Creator: Grot, Stephen
Partner: UNT Libraries Government Documents Department

DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

Description: The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.
Date: June 28, 2010
Creator: Pfiffner, Susan
Partner: UNT Libraries Government Documents Department

Biological production of ethanol from coal. [Quarterly report], December 22, 1989--March 21, 1990

Description: A batch kinetic study involving Clostridium lungdahlii in a mineral medium was carried out in order to provide baseline data for the effects of nutrients on product ratio and kinetics. The use of this minimal medium containing vitamins, minerals, select amino acids and salts showed both a lower maximum specific growth rate and a lower maximum specific uptake rate than found when using a complex medium supplemented with 0.01% yeast extract. At the same time, the product ratio was improved slightly in favor of ethanol over acetate. Future experiments will measure the effects of ammonia and phosphate limitation on product ratio and process kinetics.
Date: December 31, 1990
Partner: UNT Libraries Government Documents Department

Biological production of ethanol from coal. [Quarterly report], March 22, 1990--June 21, 1990

Description: The fermentation pH has been observed to be the key parameter affecting the ratio of ethanol to acetate produced by Clostridium ljungdahlii. The effects of controlled pH on cell growth and product formation by C. ljungdahlii were measured. It was found that cell concentration and acetate concentration increased with pH, while the ethanol concentration was highest at the lower pH. The molar product ratio of ethanol to acetate was 0.74 at pH 4.0, 0.39 at pH 4.5 and 0.12 at pH 5.0. Future experiments will concentrate on studying other important parameters such as agitation rate and nutrients concentrations with controlled pH as a preclude to continuous reactor studies.
Date: December 31, 1990
Partner: UNT Libraries Government Documents Department

Biological production of ethanol from coal. [Fourth quarterly report], October 22, 1989--December 1989

Description: Two batch and one continuous reactor study involving Clostridium ljungdahlii were carried out. First, the effects of H{sub 2} partial pressure on growth, CO and H{sub 2} uptake and product formation by C. ljungdahlii were investigated in batch culture. Over the concentration range studied, it was observed that CO was preferentially utilized in favor of H{sub 2}. It was also seen that increasing H{sub 2} partial pressures increased the ratio of ethanol to acetate. Finally, a two-stage CSTR system was successfully operated with C. ljungdahlii in which growth occurred in the first stage and ethanol production occurred in the second stage.
Date: December 31, 1989
Partner: UNT Libraries Government Documents Department

Biological production of ethanol fom coal. [Quarterly report], December 22, 1991--March 21, 1992

Description: Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data (acetate to ethanol) utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. Continuous stirred tank reactor (CSTR) with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.
Date: May 1, 1992
Partner: UNT Libraries Government Documents Department

Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

Description: A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.
Date: January 20, 2009
Creator: Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David et al.
Partner: UNT Libraries Government Documents Department

THE DETERMINATION OF CHLORINE IN POLYURETHANE PLASTIC

Description: Chlorine may be determined in polyurethane by gravimetric or spectrophotometric techniques. The sample is burned in a special combustion tube with two oxygen inlets, the products of combustion are absorbed in a solution containing sodium hydroxide and hydrogen peroxide, and the chlorine is measured either gravimetrically as silver chloride or spectrophotometrically using mercuric thiocyanate and ferric perchlorate. Eighteen determinations of cblorine in known solutions of sodium chloroacetate or perchloric acid gave an average recovery of 98.3% with a standard deviation of 2.8%. (auth)
Date: October 1, 1959
Creator: Henicksman, A.L.; VanKooten, E.H.; Gardner, R.D. & Ashley, W.H.
Partner: UNT Libraries Government Documents Department

Final Technical Report for DOE Grant, number DE-FG02-05ER15701; Probing Surface Chemistry Under Catalytic Conditions: Olefin Hydrogenation,Cyclization and Functionalization.

Description: The specific goal of this work was to understanding the catalytic reactions pathways for the synthesis of vinyl acetate over Pd, Au and PdAu alloys. A combination of both experimental methods (X-ray and Auger spectroscopies, low-energy ion scattering (LEIS), low-energy electron diffraction (LEED) and theory (Density Functional Theory (DFT) calculations and Monte Carlo methods under various different reactions) were used to track the surface chemistry and the influence of alloying. The surface intermediates involved in the various reactions were characterized using reflection-absorption infrared spectroscopy and LEED to identify the nature of the surface species and temperature-programmed desorption (TPD) to follow the decomposition pathways and measure heats of adsorption. These results along with those from density functional theoretical calculations were used determine the kinetics for elementary steps. The results from this work showed that the reaction proceeds via the Samanos mechanism over Pd surfaces whereby the ethylene directly couples with acetate to form an acetoxyethyl intermediate that subsequently undergoes a beta-hydride elimination to form the vinyl acetate monomer. The presence of Au was found to modify the adsorption energies and surface coverages of important surface intermediates including acetate, ethylidyne and ethylene which ultimately influences the critical C-H activation and coupling steps. By controlling the surface alloy composition or structure one can begin to control the steps that control the rate and even the mechanism.
Date: May 26, 2011
Creator: Neurock, Matthew
Partner: UNT Libraries Government Documents Department

Microbial Studies Supporting Implementation of In Situ Bioremediation at TAN

Description: The Idaho National Engineering and Environmental Laboratory is evaluating in situ bioremediation of contaminated groundwater at its Test Area North Facility. To determine feasibility, microcosm and bioreactor studies were conducted to ascertain the ability of indigenous microbes to convert trichloroethene and dichloroethene to non-hazardous byproducts under aerobic and anaerobic conditions, and to measure the kinetics of microbial reactions associated with the degradation process. Microcosms were established from core samples and groundwater obtained from within the contaminant plume. These microcosms were amended with nutrients, under aerobic and anaerobic conditions, to identify electron donors capable of stimulating the degradation process. Results of the anaerobic microcosm studies showed that lactate, acetate and propionate amendments stimulated indigenous cell growth and functioned as effective substrates for reductive degradation of chloroethenes. Bioreactors inoculated with cultures from these anaerobic microcosms were operated under a batch mode for 42 days then converted to a fed-batch mode and operated at a 53-day hydraulic residence time. It was demonstrated that indigenous microbes capable of complete anaerobic reductive dechlorination are present in the subject well. It was also demonstrated that aerobic microbes capable of oxidizing chlorinated compounds produced by anaerobic reductive dechlorination are present. Kinetic data suggest that controlling the type and concentration of electron donors can increase trichlorethene conversion rates. In the event that complete mineralization of trichlorethene does not occur following stimulation, and anaerobic/aerobic treatment scheme is feasible.
Date: November 1, 2000
Creator: Barnes, Joan Marie; Matthern, Gretchen Elise; Rae, Catherine & Ely, R. L.
Partner: UNT Libraries Government Documents Department