408 Matching Results

Search Results

Advanced search parameters have been applied.

A quasilinear model for solute transport under unsaturated flow

Description: We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.
Date: May 15, 2009
Creator: Houseworth, J.E. & Leem, J.
Partner: UNT Libraries Government Documents Department

Exact expressions and accurate approximations for the dependences of radius and index of refraction of solutions of inorganic solutes on relative humidity

Description: Light scattering by aerosols plays an important role in Earth’s radiative balance, and quantification of this phenomenon is important in understanding and accounting for anthropogenic influences on Earth’s climate. Light scattering by an aerosol particle is determined by its radius and index of refraction, and for aerosol particles that are hygroscopic, both of these quantities vary with relative humidity RH. Here exact expressions are derived for the dependences of the radius ratio (relative to the volume-equivalent dry radius) and index of refraction on RH for aqueous solutions of single solutes. Both of these quantities depend on the apparent molal volume of the solute in solution and on the practical osmotic coefficient of the solution, which in turn depend on concentration and thus implicitly on RH. Simple but accurate approximations are also presented for the RH dependences of both radius ratio and index of refraction for several atmospherically important inorganic solutes over the entire range of RH values for which these substances can exist as solution drops. For all substances considered, the radius ratio is accurate to within a few percent, and the index of refraction to within ~0.02, over this range of RH. Such parameterizations will be useful in radiation transfer models and climate models.
Date: March 15, 2010
Creator: Lewis, E.R. & Schwartz, S.
Partner: UNT Libraries Government Documents Department

Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

Description: Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.
Date: February 15, 2009
Creator: Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L. & Brantley, S.L.
Partner: UNT Libraries Government Documents Department

Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

Description: Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of {sup 22}Na{sup +} in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D{sub a}) of Na{sup +}, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers.
Date: August 15, 2008
Creator: Bourg, I.C.; Sposito, G. & Bourg, A.C.M.
Partner: UNT Libraries Government Documents Department

Ion exchange phenomena

Description: Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).
Date: May 1, 2011
Creator: Bourg, I.C. & Sposito, G.
Partner: UNT Libraries Government Documents Department

Effects of dry fractures on matrix diffusion in unsaturated fractured rocks

Description: Matrix diffusion has been recognized as an important mechanism affecting solute transport through unsaturated fractured rock, where a significant fraction of the fracture network remains relatively dry and inactive in conducting liquid flow. This simulation study shows that dry fractures act as strong diffusion barriers to solute transport when such fractures divide the matrix into discrete blocks. Where fracture surface roughness causes some regions of direct contact between matrix blocks separated by a dry fracture, the contacts of the matrix blocks provide conduits for liquid flow and molecular diffusion across dry fractures. Simulation results indicate that the presence of dry fractures and their discontinuities considerably affect solute transport in unsaturated fractured rocks.
Date: January 16, 2002
Creator: Seol, Yongkoo; Liu, Hui Hai & Bodvarsson, Gudmundur S.
Partner: UNT Libraries Government Documents Department


Description: Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.
Date: March 14, 2002
Creator: Ilias, Shamsuddin
Partner: UNT Libraries Government Documents Department

Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

Description: In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.
Date: October 1, 2001
Creator: Moridis, George J.
Partner: UNT Libraries Government Documents Department

Diffusion in polycrystalline microstructures

Description: Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and the topological aspects of grain boundaries. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two-dimensional polycrystalline microstructures. Effects of microstructural parameters such as average grain size and grain boundary topology are examined, as are effects due to limits of the model.
Date: July 1, 1995
Creator: Swiler, T.P. & Holm, E.A.
Partner: UNT Libraries Government Documents Department

Radionuclide Transport Models Under Ambient Conditions

Description: The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.
Date: December 20, 2001
Creator: Moridis, G. & Hu, Q.
Partner: UNT Libraries Government Documents Department

Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

Description: Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method.
Date: May 1, 1996
Creator: Shan, C. & Javandel, I.
Partner: UNT Libraries Government Documents Department

A new Lagrangian-Eulerian finite element method for modeling contaminant transport in fractured porous formations

Description: Fracture network simulators have been extensively used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful Lagrangian-Eulerian approach for solving flow and transport in networks of discrete fractures with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The code is capable of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size, shape, and dimension.
Date: September 1, 1996
Creator: Birkholzer, J. & Karasaki, K.
Partner: UNT Libraries Government Documents Department

Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

Description: Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.
Date: December 1, 1999
Creator: Griffiths, S. K. & Nilson, R. H.
Partner: UNT Libraries Government Documents Department

An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: II. Constant Liquid Withdrawal Rates

Description: This report describes the development of an effective continuum model to describe the nucleation and subsequent growth of a gas phase from a supersaturated, slightly compressible binary liquid in a porous medium, driven by solute diffusion.This report also focuses on the processes resulting from the withdrawal of the liquid at a constant rate. As before, the model addresses two stages before the onset of bulk gas flow, nucleation and gas phase growth. Because of negligible gradients due to gravity or viscous forces, the critical gas saturation, is only a function of the nucleation fraction.
Date: August 15, 2001
Creator: Tsimpanogiannis, Ioannis N. & Yortsos, Yanis C.
Partner: UNT Libraries Government Documents Department

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

Description: This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.
Date: August 1, 2000
Partner: UNT Libraries Government Documents Department

Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

Description: Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.
Date: October 15, 1998
Creator: Dander, D.C.
Partner: UNT Libraries Government Documents Department

Theory of point-defects, non-stoichiometry, and solute additions in SmCo{sub 5+x}-Sm{sub 2}Co{sub 17{minus}y} and related compounds

Description: There is considerable interest in the possibility of producing Sm-Co-based nanocomposite magnets by rapid solidification and other far-from-equilibrium processing methods. Thermodynamic and kinetic models are quite valuable in understanding and optimizing such methods. This paper describes a method of estimation, utilizing tight-binding-based bond-order interatomic interaction potentials, of the thermodynamic properties of point defects such as vacancies, interstitials, antisite defects, and solute additions in the SmCo{sub 5+x} and Sm{sub 2}Co {sub 17}-y phases and related rare-earth-transition metal compounds. Illustrative calculations for point defects in SmCo{sub 5} will be presented. The results suggest a unified model of the thermodynamic properties of the SmCo{sub 5+x} -- Sm{sub 2} Co{sub 17{minus}y} region of the phase diagram, based on the 1-5 structure and the replacement of Sm by interacting dumb-bell interstitials to form the 2-17 structure; the model is similar in nature to theories of the thermodynamics of metal hydrides.
Date: September 3, 1998
Creator: WELCH,D.O.
Partner: UNT Libraries Government Documents Department

The Radiolytic Reduction of Uranyl Ion

Description: Uranyl ion was reduced by ionizing radiation in deoxygenated solutions containing organic solutes. This reduction is effected by free radical species formed from the organics and perhaps in part by H atoms from water decomposition. This reports details results of that study.
Date: August 29, 2001
Creator: Hyder, M.L.
Partner: UNT Libraries Government Documents Department

An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: I. Constant Pressure Decline Rates

Description: This report, focuses on the isothermal gas phase growth from a supersaturated, slightly compressible, binary liquid in a porous medium. This is driven by mass transfer, the extent of which is controlled by the application of either a constant-rate decline of the system pressure or the withdrawal of the liquid at a constant rate. This report deals with the first process. Pressure depletion due to constant-rate liquid withdrawal is analyzed in a companion report .
Date: August 15, 2001
Creator: Tsimpanogiannis, Ioannis N. & Yortsos, Yanis C.
Partner: UNT Libraries Government Documents Department

The Use of Computerized Thermodynamics Databases for Solidification Modeling of Fusion Welds in Multi-Component Alloys

Description: Most engineering alloys contain numerous alloying elements and their solidification behavior can not typically be modeled with existing binary and ternary phase diagrams. There has recently been considerable progress in the development of thermodynamic software programs for calculating solidification parameters and phase diagrams of multi-component systems. These routines can potentially provide useful input data that are needed in multi-component solidification models. However, these thermodynamic routines require validation before they can be confidently applied to simulations of alloys over a wide range of composition. In this article, a preliminary assessment of the accuracy of the Thermo-Calc NiFe Superalloy database is presented. The database validation is conducted by comparing calculated phase diagram quantities to experimental measurements available in the literature. Comparisons are provided in terms of calculated and measured liquidus and solidus temperatures and slopes, equilibrium distribution coefficients, and multi-component phase diagrams. Reasonable agreement is observed among the comparisons made to date. Examples are provided which illustrate how the database can be used to approximate the solidification sequence and final segregation patterns in multi-component alloys. An additional example of the coupling of calculated phase diagrams to solute redistribution computations in a commercial eight component Ni base superalloy is also presented.
Date: September 23, 1999
Partner: UNT Libraries Government Documents Department


Description: The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.
Date: November 1, 2004
Creator: Magnuson, S.
Partner: UNT Libraries Government Documents Department