242 Matching Results

Search Results

Advanced search parameters have been applied.

Integrated analysis of production potential and profitability of a horizontal well in the Lower Glen Rose Formation, Maverick County, Texas

Description: The U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) awarded a contract in 1991 to Prime Energy Corporation (PEC) to demonstrate the benefit of using horizontal wells to recover gas from low permeability formations. The project area was located in the Chittim field of Maverick County, Texas. The Lower Glen Rose Formation in the Chittim field was a promising horizontal well candidate based on the heterogenous nature of the reservoir (suggested by large well-to-well variances in reserves) and the low percentage of economical vertical wells. Since there was substantial evidence of reservoir heterogeneity, it was unknown whether the selected, wellsite would penetrate a reservoir with the desired properties for a horizontal well. Thus, an integrated team was formed to combine geologic analysis, seismic interpretation, reservoir engineering, reservoir simulation, and economic assessment to analyze the production potential and profitability of completing a horizontal well in the Lower Glen Rose formation.
Date: March 1, 1995
Creator: Ammer, J.R.; Mroz, T.H.; Zammerilli, A.M.; Yost, A.B. II; Muncey, J.G. & Hegeman, P.S.
Partner: UNT Libraries Government Documents Department

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

Description: The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.
Date: August 18, 1993
Creator: Carden, R. S.
Partner: UNT Libraries Government Documents Department

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report

Description: The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.
Date: November 1, 1992
Partner: UNT Libraries Government Documents Department

Directional Drilling and Equipment for Hot Granite Wells

Description: Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the ...
Date: January 1, 1981
Creator: Williams, R. E.; Neudecker, J. W.; Rowley, J.C. & Brittenham, T. L.
Partner: UNT Libraries Government Documents Department

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

Description: This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the ...
Date: September 29, 2005
Creator: Witter, George; Knoll, Robert; Rehm, William & Williams, Thomas
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells. Quarterly report, April 1--June 30, 1996

Description: A number of activities have been carried out during this quarter of research. A list outlining these efforts is presented including: (1) The design and planning of the next phase of the two-phase flow experiments have moved forward. The necessary modifications to allow the use of wire-wrapped screens have been made. The flow loop and the data acquisition system are currently being tested and the new experiments are about to commence. (2) Work on obtaining exact well models for a horizontal well or a well of any general profile has continued. (3) Work on the application of horizontal wells in gas condensate reservoirs has progressed. The available methods and models are being critically evaluated with the aid of simulation runs. (4) Research work on developing coarse grid methods to study cresting in horizontal wells has continued. Correlations for optimum grid size, breakthrough time, and post breakthrough behavior (i.e. water-oil ratio) are being developed and tested for the problem of water cresting. (5) The Ph.D. project on three-dimensional flexible grid simulator (FLEX) was successfully defended in June. The FLEX simulator will be used in future studies as well as in future developments. The dissertation report will be submitted soon to the US DOE. This quarterly report is based on the last activity listed above. It shows the advantage of the new flexible grid simulator.
Date: August 1, 1996
Creator: Aziz, K. & Hewett, T.A.
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells. Quarterly technical progress report, October 1, 1995--December 31, 1995

Description: As the length of a horizontal well is increased, its contact with the reservoir increases. But at the same time, the resistance to the flow in the well also increases which has a direct negative effect on the productivity of the well. The overall performance of horizontal wells depends on the balance of these two opposing factors. No reliable tools are currently available that account for both these factors in the evaluation of horizontal well performance. An analytical well-model is developed which can quantify the effects of pressure loss in the well on the overall well performance. A sensitivity study is conducted on the effect of various reservoir, fluid and well parameters on well performance.
Date: February 1, 1996
Creator: Aziz, K.
Partner: UNT Libraries Government Documents Department

In situ construction of horizontal soil containment barrier at Fernald

Description: An innovative method of placing soil barriers to contain vertical flow is being prepared for demonstration by the Fernald Environmental Restoration Management Corporation (FERMCO), working in conjunction with the Department of Energy Office of Technology Development (DOE/OTD) and two principle subcontractors. The method employs proven directional drilling techniques, jet grouting technology and unique placement tooling to form horizontal soil barriers in situ. This is done without disturbance to existing land disposed wastes. This paper is a summary report on the current state of that demonstration, including: a discussion of the construction methods, the results of the initial tool tests, an overview of the Fernald site conditions and, the resulting path of tooling development for the second phase of tool testing.
Date: April 1, 1995
Creator: Ridenour, D.; Pettit, P.J. & Walker, J.
Partner: UNT Libraries Government Documents Department

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.
Date: November 6, 1998
Creator: Laue, Mike L.
Partner: UNT Libraries Government Documents Department

Economic recovery of oil trapped at fan margins using high-angle wells and multiple hydraulic fractures. [Quarterly report], January 1--March 31, 1996

Description: This project attempts to demonstrate the effectiveness of exploiting thin, layered, low-energy, deposits at the distal margin of a prograding turbidite complex through use of fractured horizontal or high-angle wells. The combination of hydraulic fracturing and horizontal drilling will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for hydraulic fracture treatments will be determined by fracturing an existing test well. Fracture azimuth will be predicted, in part, by passive seismic monitoring from an offset well during fracture stimulation of the test wellbore. An existing vertical well in the Yowlumne Field, Kern Co., California was hydraulically fractured. Microseismic and pressure data collected from this work are being used to predict fracture geometry and azimuth for future treatments in the proposed high-angle well. A detailed reservoir characterization of the field demonstration site is complete. This work include interpretation of a 3-D seismic survey, analysis of all available well logs, description of three whole cores, petrographic analysis of thin sections and incorporation of pressure and production data. A partial-field fine-grid model base on the reservoir characterization has been constructed and initialized. Efforts to history match the model to actual production and pressure data are underway.
Date: April 29, 1996
Creator: Niemeyer, B.L.
Partner: UNT Libraries Government Documents Department

Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

Description: This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45{degree} to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence.
Date: March 1, 1996
Creator: Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F. & Neuman, S.P.
Partner: UNT Libraries Government Documents Department

Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995

Description: This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.
Date: March 1, 1996
Creator: Dunn, T.L.
Partner: UNT Libraries Government Documents Department

Activity plan: Directional drilling and environmental measurements while drilling

Description: This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.
Date: July 16, 1998
Creator: Myers, D.A.
Partner: UNT Libraries Government Documents Department

DOE NN-20 microboreholes project. Final project report

Description: Los Alamos National Laboratory (LANL) and its contractors have developed a conceptual design for a directional microborehole drilling system for hard-rock boring. Analytical calculations, simulations, and the results of laboratory testing of critical prototype drilling components have influenced the design. Two reduced-size drilling systems to produce small diameter, 500-ft-long, directionally drilled river crossing trajectories are proposed to prove feasibility of the concept: (1) a 2-1/4-in. diameter, early demonstration unit to drill directional ultraslimholes; and (2) a 1-1/8-in. diameter, ultimate design to drill directional microboreholes. Both concepts use versatile, coiled-tubing-deployed, hydraulically-powered drilling assemblies, and a surface platform that includes a tubing injector unit to develop high load insertion (snubbing) of the tubing into the sealed borehole. Surface injection will be used to develop the required bit thrust, and both concepts provide for the use of a commercial, real-time, location and steering system that is readily and routinely adapted for deployment on a coiled-tubing drilling platform. The conceptual drilling platform and its subassemblies are shown.
Date: March 12, 1997
Creator: Dreesen, D.S.
Partner: UNT Libraries Government Documents Department

Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. FY 1993 annual report

Description: The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a database of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.
Date: March 1, 1995
Creator: Davis, D.W.
Partner: UNT Libraries Government Documents Department

Improved recovery demonstration for Williston Basin carbonates. Quarterly technical progress report, October--December 1996

Description: The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.
Date: April 1, 1997
Creator: Sippel, M.A. & Carrell, L.A.
Partner: UNT Libraries Government Documents Department

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, July 1 - September 30, 1996

Description: The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. Field demonstrations are in progress to collect data for evaluation of horizontal completions in both the Red River and Ratcliffe. A vertical well in the Red River will test attribute analysis of 3D seismic data for prediction of porosity development. Additional seismic acquisitions and interpretation are in progress for both the Ratcliffe and Red River. A water-injectivity test in a new horizontal completion in the Red Rive B zone at Buffalo Field is scheduled for next quarter.
Date: December 31, 1996
Creator: Carrell, L.A.
Partner: UNT Libraries Government Documents Department

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

Description: Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.
Date: August 1996
Creator: Harstad, H.; Teufel, L. W.; Lorenz, J. C. & Brown, S. R.
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells. Quarterly report, July 1--September 30, 1996

Description: This quarterly report reports on the efforts on Task 2, effects of reservoir heterogeneities on performance prediction of horizontal wells. Performance prediction of horizontal and non-conventional wells based on both analytical and numerical tools rarely match actual performance. Even a history matched case with sufficient production data fails to give reliable predictions for long times. In this study the authors explore reasons for the inability of predictive tools to make accurate predictions. They consider a case where a vertical well has been drilled and cored. Then, they generate twenty consistent geostatistical descriptions of permeability and porosity that are all constrained to hard data obtained from the vertical well. Simulations with these realizations show large differences in production rate, WOR and GOR predictions as a result of variations in reservoir properties. It is also shown that the effect of well index (WI) on simulation results is large. Furthermore, for the example considered, analytical models for critical rate and productivity calculations were found to have limited practical use.
Date: December 31, 1996
Creator: Aziz, K. & Hewett, T.A.
Partner: UNT Libraries Government Documents Department

Productivity and injectivity of horizontal wells. Quarterly report, October 1--December 31, 1996

Description: This report describes progress on Tasks 1 and 4, Correlations for cresting behavior in horizontal wells. Research work on developing coarse grid methods to study cresting in horizontal wells was continued. The previous correlations for optimum grid size, breakthrough time, and post breakthrough behavior (i.e., water-oil ratio) were further tested and optimized. Procedures to derive pseudo-functions either using numerical correlations or coarse grid simulations have been proposed and successfully tested. The results reported here and other calculations show that the correlations developed in this work can be applied to a wide range of conditions for predicting the water break-through time (BT) and the water-oil-ratio (PBB) for horizontal wells. All of the correlations are based on the assumption of two-phase, two-dimensional flow in homogeneous reservoirs.
Date: January 30, 1997
Creator: Aziz, K. & Hewett, T.A.
Partner: UNT Libraries Government Documents Department

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, July 1, 1996--June 30, 1997

Description: The work reported herein covers select tasks in Budget Phase 2. The principle Task in Budget Phase 2 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics.
Date: December 1, 1997
Creator: Dollens, K.B.; Harpole, K.J.; Durrett, E.G. & Bles, J.S.
Partner: UNT Libraries Government Documents Department

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Quarterly report, October 1, 1996--December 31, 1996

Description: The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the south Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within Task V field demonstration. Short progress reports are presented for field demonstration involving: drill horizontal injection wells 6C-25H and 7C-11H; and drill two vertical WAG injectors along South Cowden Unit boundary.
Date: February 27, 1997
Partner: UNT Libraries Government Documents Department

Non-radioactive disposal facility -- Bioremediation horizontal well installation project

Description: The Sanitary Landfill Corrective Action Plan proposes a two pronged approach to remediation. The first part of the total remediation strategy is the placement of a RCRA style closure cap to provide source control of contaminants into the groundwater. The second part of the proposed remediation package is a phased approach primarily using an in situ bioremediation system for groundwater clean up of the Constituents of Concern (COCs) that exceed their proposed Alternate Concentration Limits (ACL). The phased in approach of groundwater clean up will involve operation of the in situ bioremediation system, followed by evaluation of the Phase 1 system and, if necessary, additional phased remediation strategies. This document presents pertinent information on operations, well locations, anticipated capture zones, monitoring strategies, observation wells and other information which will allow a decision on the acceptability of the remedial strategy as an interim corrective action prior to permit application approval. The proposed interim phase of the remediation program will position two horizontal bioremediation wells such that the respective zones of influence will intersect the migration path for the highest concentrations of each plume.
Date: March 1, 1998
Creator: Kupar, J. & Hasek, M.
Partner: UNT Libraries Government Documents Department

Micro borehole drilling platform

Description: This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department