408 Matching Results

Search Results

Advanced search parameters have been applied.

Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

Description: We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.
Date: December 15, 2007
Creator: Wu, Yu-Shu; Ye, Ming & Sudicky, E.A.
Partner: UNT Libraries Government Documents Department


Description: Matrix diffusion can significantly retard solute transport in fractured formations. Understanding matrix diffusion is crucial for predicting the arrival time, peak concentration, and tail of a contaminant breakthrough curve. Previous studies show that the effective matrix diffusion coefficient may be scale dependent. This study examines how heterogeneities of diffusion properties affect the effective matrix diffusion coefficient. Two types of heterogeneity in a channelized flow system are considered in the study: (1) interchannel heterogeneity, and (2) intrachannel heterogeneity. The objectives of this study are (1) to examine if it is appropriate to use a single, effective matrix diffusion coefficient in a standard solution model to predict breakthrough curves (BTC) in a fractured formation, (2) if so, how this effective value is related to the degree of the matrix diffusion coefficient variability; and (3) to examine if the observed scale dependence of the effective matrix-diffusion coefficient is caused by heterogeneity in diffusion properties. The results show that the use of a single effective matrix diffusion coefficient is appropriate only if the inter- and intrachannel variability of diffusion properties is small. The scale dependence of the effective matrix diffusion coefficient is not caused by either type of the studied heterogeneity.
Date: September 7, 2005
Creator: Zhang, Y.; Liu, H.; Zhou, Q. & Finsterle, S.
Partner: UNT Libraries Government Documents Department

An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm

Description: A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.
Date: July 30, 2007
Creator: Donev, A; Garcia, A L & Alder, B J
Partner: UNT Libraries Government Documents Department

The c/a Ratio in Quenched Fe-C and Fe-N steels - a Heuristic Story

Description: The body-centered tetragonal (BCT) structure in quenched Fe-C steels is usually illustrated to show a linear change in the c and a axes with an increase in carbon content from 0 to 1.4%C. The work of Campbell and Fink, however, shows that this continuous linear relationship is not correct. Rather, it was shown that the body-centered-cubic (BCC) structure is the stable structure from 0 to 0.6 wt%C with the c/a ratio equal to unity. An abrupt change in the c/a ratio to 1.02 occurs at 0.6 wt%C. The BCT structure forms, and the c/a ratio increases with further increase in carbon content. An identical observation is noted in quenched Fe-N steels. This discontinuity is explained by a change in the transformation process. It is proposed that a two-step transformation process occurs in the low carbon region, with the FCC first transforming to HCP and then from HCP to BCC. In the high carbon region, the FCC structure transforms to the BCT structure. The results are explained with the Engel-Brewer theory of valence and crystal structure of the elements. An understanding of the strength of quenched iron-carbon steels plays a key role in the proposed explanation of the c/a anomaly based on interstitial solutes and precipitates.
Date: January 31, 2006
Creator: Sherby, O; Wadsworth, J; Lesuer, D & Syn, C
Partner: UNT Libraries Government Documents Department

Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.

Description: The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.
Date: August 1, 2003
Creator: Peterson, Stacia
Partner: UNT Libraries Government Documents Department

Averaging of Stochastic Equations for Flow and Transport in PorousMedia

Description: It is well known that at present exact averaging of theequations of flow and transport in random porous media have been realizedfor only a small number of special fields. Moreover, the approximateaveraging methods are not yet fully understood. For example, theconvergence behavior and the accuracy of truncated perturbation seriesare not well known; and in addition, the calculation of the high-orderperturbations is very complicated. These problems for a long time havestimulated attempts to find the answer for the question: Are there inexistence some exact general and sufficiently universal forms of averagedequations? If the answer is positive, there arises the problem of theconstruction of these equations and analyzing them. There are manypublications on different applications of this problem to various fields,including: Hydrodynamics, flow and transport in porous media, theory ofelasticity, acoustic and electromagnetic waves in random fields, etc.Here, we present a method of finding some general form of exactlyaveraged equations for flow and transport in random fields by using (1)some general properties of the Green s functions for appropriatestochastic problems, and (2) some basic information about the randomfields of the conductivity, porosity and flow velocity. We presentgeneral forms of exactly averaged non-local equations for the followingcases: (1) steady-state flow with sources in porous media with randomconductivity, (2) transient flow with sources in compressible media withrandom conductivity and porosity; and (3) Nonreactive solute transport inrandom porous media. We discuss the problem of uniqueness and theproperties of the non-local averaged equations for cases with some typeof symmetry (isotropic, transversal isotropic and orthotropic), and weanalyze the structure of the nonlocal equations in the general case ofstochastically homogeneous fields.
Date: January 7, 2005
Creator: Shvidler, Mark & Karasaki, Kenzi
Partner: UNT Libraries Government Documents Department


Description: The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.
Date: February 27, 2012
Creator: Flach, G.
Partner: UNT Libraries Government Documents Department

Role of Nucleation and Growth in Two-Phase Microstructure Formation

Description: During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different oscillatory microstructures that depend ...
Date: May 1, 2008
Creator: Shin, Jong Ho
Partner: UNT Libraries Government Documents Department

Evaluation of Cavitation-Erosion Resistance of 316LN Stainless Steel in Mercury Containing Metallic Solutes

Description: Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure Hg and in Hg with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure Hg. Qualitatively, each solute appeared to increase the post-test wetting tenacity of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape.
Date: August 1, 2006
Creator: Pawel, Steven J & Mansur, Louis K
Partner: UNT Libraries Government Documents Department

Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

Description: The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.
Date: August 18, 2008
Creator: Chen, Qian
Partner: UNT Libraries Government Documents Department

Preliminary Gas and Isotope Geochemistry in the Rehai Geothermal Field, P.R. China

Description: Based on gas and sulphur isotopic composition, two types of steam in Rehai geothermal field are identified. One is with higher CO{sub 2} and H{sub 2}S concentration, the {delta}{sup 34}S of H{sub 2}S is in the range 2.49{per_thousand} to -1.04{per_thousand} (vs CDT), from which the H{sub 2}S-temperature is over than 250 C. The other is with lower CO{sub 2} and H{sub 2}S concentration, the {delta}{sup 34}S of H{sub 2}S is in the range -4.0{per_thousand} to -8.36{per_thousand}, from which the H{sub 2}S- and H{sub 2}-temperatures are 180 C-210 C, in good agreement with quartz temperature. The thermal water in the Rehai field is of local meteoric origin. Maximum {delta}{sup 18}O-value shift is less than 2.0{per_thousand} (vs SMOW). Mixing is widespread and could be identified on isotope and solute chemistry.
Date: January 1, 1995
Creator: P., Zhao & Z., Liao
Partner: UNT Libraries Government Documents Department


Description: Condensed phase physical and chemical processes generally involve interactions covering a wide range of distance scales, from short-range molecular interactions requiring orbital overlap to long-range coulombic interaction between local sites of excess charge (positive or negative monopoles). Intermediate-range distances pertain to higher-order multipolar as well as inductive and dispersion interactions. Efforts to model such condensed phase phenomena typically involve a multi-tiered strategy in which quantum mechanics is employed for full electronic structural characterization of a site of primary interest (e.g., a molecular solute or cluster), while more remote sites are treated at various classical limits (e.g., a molecular force field for discrete solvent molecules or a dielectric continuum (DC) model, if the solute is charged or has permanent multipole moments). In particular, DC models have been immensely valuable in modeling chemical reactivity and spectroscopy in media of variable polarity. Simple DC models account qualitatively for many important trends in the solvent dependence of reaction free energies, activation free energies, and optical excitation energies, and many results of semiquantitative or fully quantitative significance in comparison with experiment have been obtained, especially when detailed quantum chemical treatment of the solute is combined self consistently with DC treatment of the solvent (e.g., as in the currently popular PCM (polarized continuum model) approaches).
Date: November 1, 2006
Creator: NEWTON, M.D.
Partner: UNT Libraries Government Documents Department

Analytical Solutions for Sequentially Reactive Transport with Different Retardation Factors

Description: Integral transforms have been widely used for deriving analytical solutions for solute transport systems. Often, analytical solutions can only be written in closed form in frequency domains and numerical inverse-transforms have to be involved to obtain semi-analytical solutions in the time domain. For this reason, previously published closed form solutions are restricted either to a small number of species or to the same retardation assumption. In this paper, we applied the solution scheme proposed by Bauer et al. in the time domain. Using available analytical solutions of a single species transport with first-order decay without coupling with its parent species concentration as fundamental solutions, a daughter species concentration can be expressed as a linear function of those fundamental solutions. The implementation of the solution scheme is straight forward and exact analytical solutions are derived for one- and three-dimensional transport systems.
Date: August 1, 2001
Creator: Sun, Y; Buscheck, T A; Mansoor, K & Lu, X
Partner: UNT Libraries Government Documents Department


Description: Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.
Date: March 14, 2002
Creator: Ilias, Shamsuddin
Partner: UNT Libraries Government Documents Department

Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

Description: In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.
Date: October 1, 2001
Creator: Moridis, George J.
Partner: UNT Libraries Government Documents Department

Diffusion in polycrystalline microstructures

Description: Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and the topological aspects of grain boundaries. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two-dimensional polycrystalline microstructures. Effects of microstructural parameters such as average grain size and grain boundary topology are examined, as are effects due to limits of the model.
Date: July 1, 1995
Creator: Swiler, T.P. & Holm, E.A.
Partner: UNT Libraries Government Documents Department

Radionuclide Transport Models Under Ambient Conditions

Description: The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.
Date: December 20, 2001
Creator: Moridis, G. & Hu, Q.
Partner: UNT Libraries Government Documents Department

Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

Description: Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method.
Date: May 1, 1996
Creator: Shan, C. & Javandel, I.
Partner: UNT Libraries Government Documents Department

A new Lagrangian-Eulerian finite element method for modeling contaminant transport in fractured porous formations

Description: Fracture network simulators have been extensively used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful Lagrangian-Eulerian approach for solving flow and transport in networks of discrete fractures with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The code is capable of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size, shape, and dimension.
Date: September 1, 1996
Creator: Birkholzer, J. & Karasaki, K.
Partner: UNT Libraries Government Documents Department

Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

Description: Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.
Date: December 1, 1999
Creator: Griffiths, S. K. & Nilson, R. H.
Partner: UNT Libraries Government Documents Department

An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: II. Constant Liquid Withdrawal Rates

Description: This report describes the development of an effective continuum model to describe the nucleation and subsequent growth of a gas phase from a supersaturated, slightly compressible binary liquid in a porous medium, driven by solute diffusion.This report also focuses on the processes resulting from the withdrawal of the liquid at a constant rate. As before, the model addresses two stages before the onset of bulk gas flow, nucleation and gas phase growth. Because of negligible gradients due to gravity or viscous forces, the critical gas saturation, is only a function of the nucleation fraction.
Date: August 15, 2001
Creator: Tsimpanogiannis, Ioannis N. & Yortsos, Yanis C.
Partner: UNT Libraries Government Documents Department

Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

Description: This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.
Date: August 1, 2000
Partner: UNT Libraries Government Documents Department