564 Matching Results

Search Results

Advanced search parameters have been applied.

Strategy Guideline: High Performance Residential Lighting

Description: The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.
Date: February 1, 2012
Creator: Holton, J.
Partner: UNT Libraries Government Documents Department

Energy Efficiency Through Lighting Upgrades

Description: Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year’s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.
Date: June 1, 2010
Creator: Berst, Kara & Howeth, Maria
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).
Date: May 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

Description: The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.
Date: May 1, 2009
Creator: Cole, Pamala C. & Lucas, Robert G.
Partner: UNT Libraries Government Documents Department

Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

Description: The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).
Date: December 29, 2007
Creator: Mueller, Robert P. & Simmons, Mary Ann
Partner: UNT Libraries Government Documents Department

Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

Description: Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to evaluate the technical feasibility of replacing existing roadway lighting on the bridge with products utilizing LED technology. GGB and PG&E also indicated interest in induction (i.e., electrodeless fluorescent) technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. The goal of the study was to identify any solutions which would reduce energy use and maintenance without compromising the quantity or quality of existing illumination. Products used for roadway lighting on the historic bridge must be installed within the existing amber-lensed shoebox-style luminaire housings. It was determined that induction technology does not appear to represent a viable alternative for the roadway luminaires in this application; any energy savings would be attributable to a reduction in light levels. Although no suitable LED retrofit kits were identified for installation within existing luminaire housings, several complete LED luminaires were found to offer energy savings of 6-18%, suggesting custom LED retrofit kits could be developed to match or exceed the performance of the existing shoeboxes. Luminaires utilizing ceramic metal halide (CMH) were also evaluated, and some were found to offer 28% energy savings, but these products might actually increase maintenance due to the shorter rated lamp life. Plasma technology was evaluated, as well, but no suitable products were identified. Analysis provided in this report was completed in May 2012. Although LED technologies are expected to become increasingly viable over time, and product mock-ups may reveal near-term solutions, some options not currently considered by GGB may ultimately merit evaluation. For example, it would be preferable in terms of performance to simply replace existing luminaires ...
Date: September 1, 2012
Creator: Tuenge, Jason R.
Partner: UNT Libraries Government Documents Department

Stress Testing of the Philips 60W Replacement Lamp L Prize Entry

Description: The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stress cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions of the Philips L Prize entry.
Date: April 24, 2012
Creator: Poplawski, Michael E.; Ledbetter, Marc R. & Smith, Mark
Partner: UNT Libraries Government Documents Department

Summary of Initial Examination of Lighting-Only Utility Projects in the Federal Sector

Description: This work complements earlier work on an analysis of Federal utility energy projects that implemented excusively lighting upgrades. The objective of this analysis is to better understand the lighting-only projects through determination of the relationship of capital invested and the resulting energy and cost savings, in terms of geographic locale, project size, and potential according to specific lighting technologies and/or control technology implemented.
Date: July 26, 2007
Creator: Solana, Amy E.; Sandusky, William F. & McMordie-Stoughton, Katherine L.
Partner: UNT Libraries Government Documents Department

High Efficiency, Illumination Quality OLEDs for Lighting

Description: The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the ...
Date: March 31, 2008
Creator: Shiang, Joseph; Cella, James; Chichak, Kelly; Duggal, Anil; Janora, Kevin; Heller, Chris et al.
Partner: UNT Libraries Government Documents Department

TITLE III EVALUATION REPORT FOR THE SUBSURFACE LIGHTING SYSTEM

Description: The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Subsurface Lighting System. Recommendations for resolving discrepancies between the as-constructed system, and the technical baseline requirements are included in this report. Cost and Schedule estimates are provided for all recommended modifications. This report does not address items which do not meet current safety or code requirements. These items are identified to the CMO and immediate action is taken to correct the situation. The report does identify safety and code items for which the A/E is recommending improvements. The recommended improvements will exceed the minimum requirements of applicable code and safety guide lines. These recommendations are intended to improve and enhance the operation and maintenance of the facility.
Date: September 9, 1998
Creator: Fernandez, L.J.
Partner: UNT Libraries Government Documents Department

Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor

Description: This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and similar light bulbs. In ...
Date: September 15, 2008
Creator: Falicoff, Waqidi
Partner: UNT Libraries Government Documents Department

Commercial Lighting Solutions, Webtool Peer Review Report

Description: The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the beta version of the CLS webtool, which contains retail box lighting solutions. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed about which feedback should be addressed for the release of version 1.0 of the webtool at the Lightfair conference in New York City in May 2009. Due to the volume of data (~500 comments) the methodology for addressing the peer review comments was central to the success of the ultimate goal of improving the tool. The comments were first imported into a master spreadsheet, and then grouped and organized in several layers. Solutions to each comment were then rated by importance and feasibility to determine the practicality of resolving the concerns of the commenter in the short-term or long-term. The rating system was used as an analytical tool, but the results were viewed thoughtfully to ensure that they were not the sole the factor in determining which comments were recommended for near-term resolution. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 1.0 as well as appendices containing the short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and ...
Date: June 17, 2009
Creator: Jones, Carol C. & Meyer, Tracy A.
Partner: UNT Libraries Government Documents Department

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment

Description: Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.
Date: November 20, 2009
Creator: Parker, Steven A. & Beeson, Tracy A.
Partner: UNT Libraries Government Documents Department

Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

Description: A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.
Date: September 30, 2012
Creator: Myer, Michael; Goettel, Russell T. & Kinzey, Bruce R.
Partner: UNT Libraries Government Documents Department

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

Description: An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.
Date: April 19, 2010
Creator: Rubinstein, Francis & Enscoe, Abby
Partner: UNT Libraries Government Documents Department

Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions

Description: The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.
Date: February 1, 2010
Creator: Beeson, Tracy A. & Jones, Carol C.
Partner: UNT Libraries Government Documents Department

An In-Situ Photometric and Energy Analysis of a Sulfur LampLighting System

Description: This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at the U.S. Department of Energy's Forrestal Building. This novel system couples two high lumen output, high efficiency sulfur lamps to a single 73 m (240 ft.) hollow light guide lined with a reflective prismatic film. The system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to light the space. This paper details the results of a field study that characterizes the significant energy savings and increased illumination levels that have been achieved. Comparisons to modeled HID lighting scenarios are also included.
Date: June 1, 1995
Creator: Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein,Francis & Siminovitch, Michael
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

National lighting product information program. Final technical report, October 1996--September 1997

Description: The National Lighting Product Information Program (NLPIP) produces reports on specific lighting technologies and topics which enable energy end-users to better define and specify their lighting equipment needs. NLPIP was initiated in the fall of 1990 to provide an independent, objective source for performance information on lighting products. The mission statement adopted at the outset for the program and that continues to guide the program is: to rapidly provide the best information available on efficient lighting products. The sponsors to the program have continually required three primary criteria for NLPIP: the program must be objective, remaining free from any bis toward certain technologies or producers, it must be educational, helping the audience better understand the technologies and their applications, and it must provide manufacturer-specific performance information, differentiating NLPIP from other sources of lighting educational information. This mission statement and these criteria have guided the program throughout its existence. Information developed by NLPIP is published through the serials Specifier Reports, Specifier Reports Supplements, and Lighting Answers.
Date: May 1, 1998
Creator: Davis, R. G.
Partner: UNT Libraries Government Documents Department