778 Matching Results

Search Results

Advanced search parameters have been applied.

Economic evaluation report

Description: The objective of this report is to establish a database of costs associated with operating a circulating fluidized bed boiler for electric power production in a utility environment. Such data and information can be used by others for resource planning and for comparisons with competing technologies. Costs are also presented for the engineering, construction and start-up of the Nucla CFB. These are compared with estimates made in 1981 prior to completing detailed engineering. Detailed monthly operating costs over the testing period covered by the Cooperative Agreement, from September 1988 through January 1991, are presented in Appendix D. An overall summary of cost data for this period is presented in the same format in Appendix C. These data were generated by CUEA using reporting requirements established by the Rural Electrification Administration's Uniform System of Accounts. This accounting system is consistent with that used by the Federal Energy Regulatory Commission's Uniform System of Accounts, which is prescribed for public utilities and licensees subject to the provisions of the Federal Power Act. The definitions of terms used in the REA code of accounts are contained in Appendix B.
Date: March 1, 1992
Partner: UNT Libraries Government Documents Department

Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

Description: A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.
Date: January 1, 1991
Creator: Gautam, M. & Johnson, E.
Partner: UNT Libraries Government Documents Department

Process performance of Ahlstrom Pyroflow PCFB pilot plant

Description: Ahlstrom Pyropower has designed and built a 10 MW[sub th] (34 MMBtu) pressurized circulating fluidized bed (PCFB) pilot plant in Karhula, Finland. The unit is now operating. Data from this unit supports the design of a nominal 80 MW, Des Moines Energy Center 1 (DMEC-1) PCFB Repowering Project. The pilot plant PCFB combustor is of square cross-section. It is housed in a 3.6 m (11.8 ft) diameter pressure vessel. A high pressure high temperature gas cleaning unit downstream of the PCFB exhaust is installed in a separate 2.6 m (8.5 ft) diameter pressure vessel. The maximum plant operating pressure is 16 bar (232 psia). The fuel is fed in slurry form; sorbent is also fed along with the fuel. The net heat input per unit cross section of the combustor is the highest of any known combustion mode. The heat release can go up to 40 MW/m[sup 2] (12.6 MMBtu/ft[sup 2] hr). Many types of coals including high sulfur, bituminous Illinois No. 6 coal and Western sub bituminous, low sulfur Powder River Basin coal were tested. Combustion efficiencies in the range of 99.5 to 99.9% have been consistently observed. Emissions of various gases such as NO[sub x] SO[sub 2] and CO at different operating pressures and loads were monitored. The gas emissions have been lower than expected based on atmospheric circulating fluidized bed boiler experience. The sulfur retention is over 95 % with a Ca/S molar ratio of 1 to 2 for high sulfur Illinois No.6 coal. A GAVS molar ratio of 2.5 to 3.5 was observed to retain 95 % of sulfur with low sulfur Powder River Basin coal. All gaseous emissions during testing with Illinois No. 6 coal and Powder River Basin coal are well within the projected limits for the DMEC1 project. Emission data from tests with ...
Date: May 1, 1993
Creator: Sellakumar, K.M. (R D Center, Ahlstrom Pyropower, Inc., San Diego, CA (United States)); Isaksson, J. & Tiensuu, J. (Ahlstroem Pyropower, Inc., Karhula (Finland). Hans Ahlstroem Lab.)
Partner: UNT Libraries Government Documents Department

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant

Description: The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.
Date: January 1, 1992
Creator: Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J. & Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)
Partner: UNT Libraries Government Documents Department

[PFBC Hot Gas Cleanup Test Program]

Description: Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.
Date: October 1, 1992
Partner: UNT Libraries Government Documents Department

COSTEAM expansion and improvements: design of a coal-fired atmospheric fluidized bed submodel, an oil-fired submodel and input/output improvements

Description: COSTEAM is an interactive computer model designed to estimate the cost of industrial steam produced by various steam plant technologies. At the end of Phase I development, the COSTEAM model included only one submodel to calculate the capital and operating costs of a conventional coal-fired boiler plant with environmental control systems. This report describes the results of Phase II development. Two new submodels are added which calculate costs for steam produced by coal-fired atmospheric fluidized bed boilers and by oil-fired boilers. COSTEAM input/output capabilities are also improved.
Date: October 1, 1980
Creator: Reierson, James D.; Rosenberg, Joseph I.; Murphy, Mary B. & Lethi, Minh- Triet
Partner: UNT Libraries Government Documents Department

COSTEAM, an industrial steam generation cost model: updated users' manual

Description: COSTEAM is a tool for designers and managers faced with choosing among alternative systems for generating process steam, whether for new or replacement applications. Such a decision requires a series of choices among overall system concepts, component characteristics, fuel types and financial assumptions, all of which are interdependent and affect the cost of steam. COSTEAM takes the user's input on key characteristics of a proposed process steam generation facility, and computes its capital, operating and maintenance costs. Versatility and simplicity of operation are major goals of the COSTEAM system. As a user, you can work to almost any level of detail necessary and appropriate to a given stage of planning. Since the values you specify are retained and used by the computer throughout each terminal session, you can set up a hypothetical steam generation system fixed in all characteristics but one or two of special interest. It is then quick and easy to obtain a series of results by changing only those one or two values between computer runs. This updated version of the Users' Manual contains instructions for using the expanded and improved COSTEAM model. COSTEAM has three technology submodels which address conventional coal, conventional oil and atmospheric fluidized bed combustion. The structure and calculation methods of COSTEAM are not discussed in this guide, and need not be understood in order to use the model. However, you may consult the companion volume of this report, COSTEAM Expansion and Improvements: Design of a Coal-Fired Atmospheric Fluidized Bed Submodel, an Oil-Fired Submodel, and Input/Output Improvements, MTR80W00048, which presents the design details.
Date: October 1, 1980
Creator: Murphy, Mary; Reierson, James & Lethi, Minh- Triet
Partner: UNT Libraries Government Documents Department

Rivesville multicell fluidized-bed boiler. Annual technical progress report, July 1979-June 1980

Description: Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed bouler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. This report presents information on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed educators and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.
Date: January 1, 1980
Partner: UNT Libraries Government Documents Department

Tidd PFBC Demonstration Project: Public final design report

Description: This Public Final Design Report describes the 70 MW(e) Tidd PFBC Demonstration Plant under construction in Brilliant, Ohio. This project is receiving cost-sharing from the US Department of Energy (DOE), and is being administered by the Morgantown Energy Technology Center in accordance with DOE Cooperative Agreement No. DE-FC21-87 MC24132.000. The project is also receiving costsharing from the State of Ohio. This award is being administered by the Ohio Coal Development Office. The Tidd PFBC Demonstration Project is the first utility-scale demonstration project in the US. Its objective is to demonstrate that the Pressurized Fluidized Bed Combustion (PFBC) combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. Detailed design of the plant began in May 1987, leading to the start of construction in April 1988. First coal fire occurred in November 1990, and the three-year test program began in February 1991.
Date: October 1, 1992
Partner: UNT Libraries Government Documents Department

Metallic species derived from fluidized bed coal combustion. [59 references]

Description: Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.
Date: January 1, 1980
Creator: Natusch, D.F.S. & Taylor, D.R.
Partner: UNT Libraries Government Documents Department

Review of fluidized bed combustion technology in the United States

Description: The United States (US) initiated work in fluidized bed combustion (FBC) in the mid-1960s, with primary emphasis on industrial applications. With passage of the Clean Air Act in 1970, the environmental benefits of the technology soon attracted interest. This provided the impetus for expanded effort focused on the reduced NO/sub x/ emissions resulting from lower combustion temperature and SO/sub 2/ capture by means of chemical reaction with limestone or dolomite in the fluidized bed. The oil embargo in 1973 further stimulated interest in FBC technology. Several manufacturers presently offer atmospheric fluidized bed combustion (AFBC) and circulating fluidized bed combustion (CFBC) units for industrial application in the United States. However, FBC for electric power generation remains in the development and demonstration phase. The Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) are operating a 20-MW AFBC utility pilot plant and are proceeding with plans for a 160-MW(e) demonstration plant with other participants. Research has been under way on pressurized fluidized bed combustion (PFBC) at Grimethorpe in South Yorkshire, England, and within the United States at the Curtiss-Wright Pilot Plant, and at other smaller test facilities. An emerging turbocharged PFBC concept will likely stimulate more near-term interest in PFBC technology for both industrial and utility applications. The major US programs and test facilities are described; remaining technical uncertainties are discussed, and the future outlook for the technology is assessed.
Date: January 1, 1984
Creator: Krishnan, R.P.; Daw, C.S. & Jones, J.E. Jr.
Partner: UNT Libraries Government Documents Department

AFBC co-firing of coal and hospital wastes

Description: During the previous report period, shredder system verification and testing was initiated at DONLEE's pilot facility located in York, Pennsylvania. General waste from the Lebanon VA Medical Center was transported to the pilot facility in York. The waste was fed into the unit starting December 18, 1991. The waste feed rate was adjusted to approximately 150 lb./hr. The stack monitoring portion of the shredder testing was conducted on January 28 and 29. The heat input was approximately 6 [times] l0[sup 6] BTU/hr. both days. On the first day, only coal and limestone were fed into the unit. On the second day, hospital waste, coal, and limestone were fed into the unit. On both days of testing, data included: coal, limestone, and ash samples and flow rates; all air flows; stack flue gas flow; combustor, cyclone, boiler, and baghouse; temperatures and pressures; stack concentration of dioxins and furans; stack concentration of heavy metals; stack concentration of HCI; stack concentration of PAH. The hospital waste feed during the second test was approximately 150 lb./hr. The PA DER requested that the final design of the Lebanon facility fire anthracite coal only. On February 4, the unit was lit off on anthracite coal. Operation on anthracite stabilized at a 1650 degree F combustor temperature. Hospital waste was fed into the unit while on anthracite without incident.
Date: January 1, 1992
Partner: UNT Libraries Government Documents Department

Advanced turbine design for coal-fueled engines

Description: The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.
Date: April 1, 1993
Creator: Wagner, J.H. & Johnson, B.V.
Partner: UNT Libraries Government Documents Department

EERC pilot-scale CFBC evaluation facility Project CFB test results

Description: Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.
Date: September 1, 1992
Creator: Mann, M.D.; Hajicek, D.R.; Henderson, A.K. & Moe, T.A.
Partner: UNT Libraries Government Documents Department

Test results from the 70 MW Tidd PFBC Demonstration Plant

Description: The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio, the first PFBC demonstration Plant in North America, is in its third year of operation and testing. Operation of the Tidd Plant has provided invaluable experience with the systems required to apply PFBC technology to electric power generation. It has also provided operating data to verify the ability of the PFBC process to achieve a high degree of sulfur removal and low NO[sub x] emissions when burning high-sulfur bituminous coal. This paper provides an update on the operating experience of the Tidd PFBC Demonstration Plant, reviews the lessons teamed with PFBC technology in the start-up and debugging of the PFBC systems, and provides data from the operation and performance tests conducted at the Tidd Plant.
Date: January 1, 1993
Creator: Hafer, D.R.; Mudd, M.J. & Zando, M.E.
Partner: UNT Libraries Government Documents Department

Design study of a 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace

Description: The results of a study of 200 MW(e) alkali metal/steam binary power plant using a coal-fired fluidized bed furnace are described. Both cesium and potassium were evaluated for the topping cycle working fluid and cesium was selected. The fuel used was Illinois No. 6 coal, and limestone was used as the bed sorbent material. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion system were 1500/sup 0/F to 900/sup 0/F for the topping cycle and 2400 psi 1000/sup 0/F to 1/sup 1///sub 2/ in. Hg for the steam system. Several variations of the plant were briefly evaluated. These variations included using a supercritical steam system and using a pressurized furnace. The principal conclusions of the study are as follows: a satisfactory design of an atmospheric pressure fluidized bed furnace binary power plant was evolved which uses a variation of the conventional binary cycle which permits utilizing the full potential of the alkali metal topping cycle; the net plant efficiency (coal to busbar) of the reference system was 44.6%; the net plant efficiency of a larger system with a 3500 psi 1000/sup 0/F steam system was 46.8%; an intermediate pressure turbocharged system with a furnace pressure of 4 atm (0.4 MPa) would have many advantages in comparison to the atmospheric pressure system, including a plant efficiency about one percentage point higher than the reference design, reduced limestone requirement and potential capital cost saving; and although cost estimates were not a part of the design study, a comparison of the design of this study to that of the Energy Conversion Alternative Study (ECAS) indicates plant costs 20 to 25% less than that of the final ECAS design.
Date: April 1, 1978
Creator: Samuels, G.; Graves, R. L.; Lackey, M. E.; Tudor, J. J. & Zimmerman, G. P.
Partner: UNT Libraries Government Documents Department

Laboratory/bench-scale testing and evaluation of the A. P. T. Dry-Plate Scrubber. Fourth quarterly technical progress report, December 1, 1980-February 28, 1981

Description: The A.P.T. Dry Plate Scrubber (DPS) uses a shallow, dense mobile bed of solid collector granules which move across a perforated plate. The gas stream containing fine particles and vapors is moved upward through the perforations to form high velocity gas jets. The fine particles are removed by inertial deposition onto the collector granules or by direct interception. Electrostatic forces also can be used to improve the collection efficiency and increase the adhesive forces between the particles and collectors. The DPS column consists of a series of collection stages (perforated plates) with the collectors either passing sequentially over each stage or being fed separately to each stage. The stages can be designed so as to promote the collection of large particles on the lower stages and the collection of fine particles and alkali vapors on the upper stages. The DPS is especially well suited for cleaning high temperature and pressure gases such as the effluent from a pressurized fluidized bed combustion (PFBC) process. The objective of this project is to conduct a bench scale experimental evaluation of the DPS at high temperature and pressure to determine its potential for controlling particulate and alkali vapor emissions from PFBC processes.
Date: March 30, 1981
Partner: UNT Libraries Government Documents Department

Inventory of federally-funded projects and programs related to anthracite

Description: This report is a compilation of descriptions of federal projects and programs that are concerned in some way with anthracite. It is the first inventory of its type to be prepared. Among the projects and programs described are those completed in the latter half of 1979, those that are currently active, and others that will start soon. Of the 43 projects described, 8 involve research, development, and demonstration (RD and D) of technologies aimed at enhancing the use of anthracite or anthracite mining waste; 6 address environmental problems associated with anthracite mining or use; 9 provide information on the anthracite industry; 16 involve studies related to anthracite; and 4 are miscellaneous projects and programs. These projects and programs represent federal government expenditures of $27.1 million, excluding current military purchases of anthracite for use in European bases of $33.6 million, and US Bureau of Mines mined land demonstration and reclamation projects of $38.3 million.
Date: June 1, 1980
Partner: UNT Libraries Government Documents Department

Fluidized bed incineration system for U. S. Department of Energy Defense Waste, July--December 1977

Description: A fluidized-bed incineration facility has been designed for installation at the Rocky Flats Plant to develop and demonstrate the process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot scale unit and represents a scale-up factor of nine. Building modifications are complete and equipment installation has begun.
Date: October 23, 1978
Creator: Anderson, D.L.; Meyer, F.G. & Feng, P.K.
Partner: UNT Libraries Government Documents Department

Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

Description: This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).
Date: December 31, 1989
Partner: UNT Libraries Government Documents Department

Clean coal technology: The new coal era

Description: The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.
Date: January 1, 1994
Partner: UNT Libraries Government Documents Department

Turbine and hot gas cleanup at Wilsonville

Description: Southern Company Services, Inc. (SCS) has entered into an agreement with the Department of Energy, Morgantown Energy Technology Center (DOE/METC) to design, construct and operate the Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The purpose is to identify and evaluate potential hot particulate cleanup systems on a scale large enough so that these systems can be related to potential commercial system. This entails first developing the criteria for engineering-scale testing of hot particulate control devices which will lead to the design, construction and operation of a flexible test facility capable of operating under gasification and PFBC conditions. This will allow the testing of particulate control devices (PCDs) under realistic conditions in terms of gas composition, temperature, pressure, particulate loading and operating duration. The conceptual design of the Hot Gas Cleanup Test Facility Project was expanded to include additional modules to better address the scope of the Cooperative Agreement with the DOE/METC. The expanded test facility, referred to as the Power Systems Development Facility (PSDF), will provide a flexible test location in which the development of advanced power system components, the evaluation of advanced turbine and fuel cell configurations, and the integration and control issues of these systems. The facility is intended to provide direct support for upcoming DOE demonstrations of power generation technologies utilizing hot stream cleanup and will provide a resource for rigorous testing and performance assessment of hot stream cleanup devices now being developed with the support of DOE/METC.
Date: January 1, 1993
Creator: Sears, R. E.; Griswold, G. H. (Southern Co. Services, Inc., Birmingham, AL (United States)); Fankhanel, M. O. (Kellogg (M. W.) Co. (United States)); Kastner, C. E. (Foster Wheeler Corp. (United States)) & Pontius, D. H. (SRI International, Menlo Park, CA (United States))
Partner: UNT Libraries Government Documents Department

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

Description: The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)
Date: August 1, 1980
Partner: UNT Libraries Government Documents Department

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

Description: The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)
Date: August 1, 1980
Partner: UNT Libraries Government Documents Department