1,123 Matching Results

Search Results

Advanced search parameters have been applied.

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY

Description: A bibliography of published papers describing models, measurement techniques, apparatus, and data for the thermal performance of whole buildings and building envelope systems has been collected (aggregate energy consumption of whole buildings, performance of HVAC equipment, and solar technologies are not included). Summary descriptions of the content of each citation are provided. Measurements on whole buildings or on systems other than walls are sparse. However, new and recently completed measurement facilities are increasing these capabilities. Measurements under dynamic conditions are difficult to accomplish and few reliable data exist. Some analogs have been explored experimentally and analytically. Citations on analytical models are selective and concentrate on methodology that forms the basis of computer programs for whole-building energy analysis. Interesting future directions include new approaches to dynamic measurements, both in the laboratory and in the field, for envelope systems and for whole buildings.
Date: April 1, 1979
Creator: Carroll, William L.
Partner: UNT Libraries Government Documents Department

Air Leakage of U.S. Homes: Model Prediction

Description: Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.
Date: January 1, 2007
Creator: Sherman, Max H. & McWilliams, Jennifer A.
Partner: UNT Libraries Government Documents Department

Air Tightness of US Homes: Model Development

Description: Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.
Date: May 1, 2006
Creator: Sherman, Max H.
Partner: UNT Libraries Government Documents Department

The Envelope Thermal Test Unit (ETTU): Full Measurement of WallPerform ance

Description: There are many ways of calculating the dynamic thermal performance of walls and many ways of measuring the performance of walls in the laboratory, relatively few field measurements have been made of the dynamic performance of wall in situ. Measuring the thermal performance of walls in situ poses two separate problems: measuring the heat fluxes and surface temperatures of the wall, and reducing this data set into usable parameters. We have solved the first problem by developing the Envelope Thermal Test Unit (ETTU). ETTU consists of two specially constructed polystyrene blankets, 1.2m square, placed on either side of the test wall that both control and measure the surface fluxes and surface temperatures of the wall. To solve the second problem we have developed a simplified dynamic model that describes the thermal performance of a wall in terms of its steady-state conductance, a time constant, and some storage terms. We have used ETTU in the field to measure the thermal performance of walls, and have applied our simplified analysis to calculate simplified thermal parameters from this data set. In this report, we present the in-situ measurements made to date using ETTU, and the resulting model predictions. The agreement between measured and predicted surface fluxes demonstrates the ability of our test unit and analytic model to describe the dynamic performance of walls in situ.
Date: October 1, 1981
Creator: Sonderegger, R.C.; Sherman, M.H. & Adams, J.W.
Partner: UNT Libraries Government Documents Department

PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

Description: Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.
Date: April 21, 2008
Creator: Raszewski, F; Erich Hansen, E; Ray Schumacher, R & David Peeler, D
Partner: UNT Libraries Government Documents Department

DERIVATIONS FOR HOOP STRESSES DUE TO SHOCK WAVES IN A TUBE

Description: Equations describing the hoop stresses in a pipe due to water hammer have been presented in the literature in a series of papers, and this paper discusses the complete derivation of the pertinent equation. The derivation considers the pipe wall response to a water hammer induced shock wave moving along the inner wall of the pipe. Factors such as fluid properties, pipe wall materials, pipe dimensions, and damping are considered. These factors are combined to present a single, albeit rather complicated, equation to describe the pipe wall vibrations and hoop stresses as a function of time. This equation is also compared to another theoretical prediction for hoop stresses, which is also derived herein. Specifically, the two theories predict different maximum stresses, and the differences between these predictions are graphically displayed.
Date: April 30, 2007
Creator: Leishear, R
Partner: UNT Libraries Government Documents Department

Analysis of Building Envelope Construction in 2003 CBECS

Description: The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .
Date: June 1, 2007
Creator: Winiarski, David W.; Halverson, Mark A. & Jiang, Wei
Partner: UNT Libraries Government Documents Department

Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings

Description: This document serves as the Topical Report documenting work completed by Washington State University (WSU) under U.S. Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project was conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August 2002 through June 2006. WSU's primary experimental role is the design and implementation of a field testing protocol that monitored long term changes in the hygrothermal response of wall systems. During the project period WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, installed instrumentation in the test walls and recorded data from the test wall specimens. Each year reports were published documenting the hygrothermal response of the test wall systems. Public presentation of the results was, and will continue to be, made available to the building industry at large by industry partners and the University.
Date: May 31, 2006
Creator: Tichy, Robert & Murray, Chuck
Partner: UNT Libraries Government Documents Department

THE REAL ISSUE WITH WALL DEPOSITS IN CLOSED FILTER CASSETTES - WHAT'S THE SAMPLE?

Description: The measurement of aerosol dusts has long been utilized to assess the exposure of workers to metals. Tools used to sample and measure aerosol dusts have gone through many transitions over the past century. In particular, there have been several different techniques used to sample for beryllium, not all of which might be expected to produce the same result. Today, beryllium samples are generally collected using filters housed in holders of several different designs, some of which are expected to produce a sample that mimics the human capacity for dust inhalation. The presence of dust on the interior walls of cassettes used to hold filters during metals sampling has been discussed in the literature for a number of metals, including beryllium, with widely varying data. It appears that even in the best designs, particulates can enter the sampling cassette and deposit on the interior walls rather than on the sampling medium. The causes are not well understood but are believed to include particle bounce, electrostatic forces, particle size, particle density, and airflow turbulence. Historically, the filter catch has been considered to be the sample, but the presence of wall deposits, and the potential that the filter catch is not representative of the exposure to the worker, puts that historical position into question. This leads to a fundamental question: What is the sample? This article reviews the background behind the issue, poses the above-mentioned question, and discusses options and a possible path forward for addressing that question.
Date: September 12, 2009
Creator: Brisson, M.
Partner: UNT Libraries Government Documents Department

A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems

Description: This paper describes the Building Controls Virtual Test Bed (BCVTB) that is currently under development at Lawrence Berkeley National Laboratory. An earlier prototype linked EnergyPlus with controls hardware through embedded SPARK models and demonstrated its value in more cost-effective envelope design and improved controls sequences for the San Francisco Federal Building. The BCVTB presented here is a more modular design based on a middleware that we built using Ptolemy II, a modular software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. Our additions to Ptolemy II allow users to couple to Ptolemy II a prototype version of EnergyPlus,MATLAB/Simulink or other simulation programs for data exchange during run-time. In future work we will also implement a BACnet interface that allows coupling BACnet compliant building automation systems to Ptolemy II. We will present the architecture of the BCVTB and explain how users can add their own simulation programs to the BCVTB. We will then present an example application in which the building envelope and the HVAC system was simulated in EnergyPlus, the supervisory control logic was simulated in MATLAB/Simulink and Ptolemy II was used to exchange data during run-time and to provide realtime visualization as the simulation progresses.
Date: June 30, 2008
Creator: Wetter, Michael; Wetter, Michael & Haves, Philip
Partner: UNT Libraries Government Documents Department

Methodology for Developing the REScheckTM Software through Version 4.2

Description: This report explains the methodology used to develop Version 4.2 of the REScheck software developed for the 1992, 1993, and 1995 editions of the MEC, and the 1998, 2000, 2003, and 2006 editions of the IECC, and the 2006 edition of the International Residential Code (IRC). Although some requirements contained in these codes have changed, the methodology used to develop the REScheck software for these five editions is similar. REScheck assists builders in meeting the most complicated part of the code─the building envelope Uo-, U-, and R-value requirements in Section 502 of the code. This document details the calculations and assumptions underlying the treatment of the code requirements in REScheck, with a major emphasis on the building envelope requirements.
Date: August 31, 2009
Creator: Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Lucas, R. G.; Schultz, Robert W.; Taylor, Zachary T. et al.
Partner: UNT Libraries Government Documents Department

Transient Resistive Wall Wake for Very Short Bunches

Description: The catch up distance for the resistive wall wake in a round pipe is approximately equal to the square of the pipe radius divided by the bunch length. The standard formulae for this wake are applicable at distances much larger than the catch up distance. In this paper, we calculate the resistive wall wake at distances compared with the catch up distance assuming a constant wall conductivity.
Date: May 13, 2005
Creator: Stupakov, G.
Partner: UNT Libraries Government Documents Department

Comparison of experimental and analytical methods to evaluate thermal bridges in wall systems

Description: Twelve ASTM C0236 guarded hot box experiments have been performed on wall systems containing a variety of thermal bridges. All of the wall systems included steel framing. Six walls also had a concrete block wall system and a concrete slab to simulate a wall/floor intersection. Thermal bridges included in the wall systems included steel studs, steel tracks, steel stud/track joints, fasteners (steel framing system), concrete slab, metal bolts and angle iron, and brick ties (concrete block wall). Two-dimensional finite difference modeling was also employed to characterize the wall systems. The experimental test data was used to tune and ultimately validate the computer simulation model. The average variation between the tested and simulated wall system R-Values was 3.3% and ranged from {minus}3.4 to +7.4%. The model was then used to determine the thermal impact of each individual thermal bridge. Beside the standard complement of temperature sensors that are traditionally used for these laboratory experiments, additional sensors were installed near each thermal bridge to define the area and magnitude of the thermal distortion caused by the thermal bridge. These thermal bridges were analytically simulated and the additional heat flux due to each thermal bridge was computed. This paper summarizes the experimental and analytical analyses used to characterize the wall systems and concentrate on the thermal impact each type of thermal bridge has on the overall performance of the wall systems.
Date: March 1997
Creator: Desjarlais, A. O. & McGowan, A. G.
Partner: UNT Libraries Government Documents Department

Operability Test Procedure (OTP) for the Annulus Thermocouple Tree

Description: This document outlines the steps required to properly document the operability testing of this prototypical system. The tree is deployed in the annulus of the underground nuclear waste storage tank 241-AN-107; it is to monitor the temperature gradient of the primary containment wall using 3 arrays of contact thermocouples.
Date: February 5, 1996
Creator: Steele, R.J.
Partner: UNT Libraries Government Documents Department

Transverse resistive wall impedance for multi-layer round chambers

Description: The resistive wall impedance is usually calculated assuming the skin depth being much smaller than the chamber thickness. This approximation is not always correct. In particular, it is not valid when the revolution frequency is very low (as in VLHC [1]), or the surface is coated by a thin conductive layer (as for extraction kickers [2]), or for the coherent effects in the closed orbit motion [3]. A method of analytical calculation of the transverse impedance is developed here for multi-layer vacuum chambers and applied to an arbitrary two-layer structure.
Date: June 11, 2002
Creator: Lebedev, Alexy Burov and Valeri
Partner: UNT Libraries Government Documents Department

Development of a system of innovative insulated building blocks under energy related inventions grant. Quarterly progress report, ThermaLock Products, Inc., April 1, 1993--June 30, 1993

Description: Progress is briefly presented on the research pertaining to insulated building blocks. Areas covered include development of a stuffing machine, fabrication, sound tests, and earthquake test design.
Date: July 6, 1993
Partner: UNT Libraries Government Documents Department

Thermal behavior of mixtures of perlite and phase change material in a simulated climate

Description: A new concept for use of phase change material (PCM) in building envelopes has been investigated. The concept is called a RCR system in analogy to an electrical circuit with a capacitor between two resistors. Here, the thermal capacitance of the PCM is sandwiched between the thermal resistance of conventional insulation. The PCM used was hydrated calcium chloride dispersed in perlite and contained in watertight test cells. One cell had a PCM/perlite ratio of 2:1 by weight; the other had a 6:1 mixture. Extruded polystyrene (XPS) was the insulation below and above the PCM. Heat-flux transducers on the top and bottom of each cell as well as thermocouples from the top to the bottom of each cell allowed them to follow closely the progression of freezing and melting in the PCM as the authors subjected the cells to both steady and diurnally varying simulated outside temperatures. Computer modeling with a transient heat conduction program was successful in proving that they understood the relevant energy transfer mechanisms and thermophysical properties. For the diurnal cycles, with twice the amount of XPS below as above the PCM, much of the energy stored during daytime by melting PCM flowed to the outside at night when it froze again. Comparisons were made to the behavior of conventional insulation. With PCM, the total daily energy flow into the conditioned space below the test cells was lower and the peak flow rate was delayed in time and decreased in magnitude.
Date: February 1997
Creator: Petrie, T. W.; Childs, P. W.; Christian, J. E.; Childs, K. W. & Shramo, D. J.
Partner: UNT Libraries Government Documents Department

Dynamic response of flexible retaining walls

Description: Making use of an extension of a recently proposed, relatively simple, approximate method of analysis, a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal direction. Both cantilever and top-supported walls are examined. Following a detailed description of the method and of its rate of convergence, comprehensive numerical solutions are presented that elucidate the action of the system and the effects of the various parameters involved. The parameters varied include the flexibility of the wall, the condition of top support, and the characteristics of the ground motion. The effects of both harmonic base motions and an actual earthquake record are examined. Special attention is paid to the effects of long-period, effectively static excitations. A maximum dynamic response is then expressed as the product of the corresponding static response and an appropriate amplification or deamplification factor. The response quantities examined include the displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall force, base shear and base moment.
Date: January 1, 1997
Creator: Younan, A.H.; Veletsos, A.S. & Bandyopadhyay, K.
Partner: UNT Libraries Government Documents Department

Sampling and Analysis Plan for the Gunite and Associated Tanks Treatability Study, wall coring and scraping in Tanks W-3 and W-4 (North Tank Farm), Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: This plan documents the procedures for collecting and analyzing wall core and wall scraping samples from Tanks W-3 and W-4 in the North Tank Farm. This is in support of the Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study of the Gunite and Associated Tanks at ORNL. The sampling and analysis will be in concert with sludge retrieval and sluicing of the tanks. Wall scraping and wall core samples will be collected from each quadrant in each tank by using a scraping sampler and a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory and analyzed for physical/radiological characteristics, including total activity, gross alpha, gross beta, radioactive Sr + Cs, and other alpha and gamma emitting radionuclides. The Data Quality Objectives process, based on US EPA guidance (EPA QA/G-4, Sept. 1994), was applied to identify the objectives of this sampling and analysis. Results of the analysis will be used to validate predictions of a Sr concrete diffusion model, estimate the amount of radioactivity remaining in the tank shells, provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and estimate the performance of the wall cleaning system.
Date: August 1, 1997
Partner: UNT Libraries Government Documents Department

Sampling and analysis plan for the gunite and associated tanks interim remedial action, wall coring and scraping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: This Sampling and Analysis Plan documents the procedures for collecting and analyzing wall core and wall scraping samples from the Gunite and Associated Tanks. These activities are being conducted to support the Comprehensive Environmental Response, Compensation, and Liability Act at the gunite and associated tanks interim remedial action at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The sampling and analysis activities will be performed in concert with sludge retrieval and sluicing of the tanks. Wall scraping and/or wall core samples will be collected from each quadrant in each tank by using a scraping sampler and/or a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory, and analyzed for physical and radiological characteristics, including total activity, gross alpha, gross beta, radioactive strontium and cesium, and other alpha- and gamma-emitting radionuclides. The data quality objectives process, based on US Environmental Protection Agency guidance, was applied to identify the objectives of this sampling and analysis. The results of the analysis will be used to (1) validate predictions of a strontium concrete diffusion model, (2) estimate the amount of radioactivity remaining in the tank shells, (3) provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and (4) estimate the performance of the wall cleaning system. This revision eliminates wall-scraping samples from all tanks, except Tank W-3. The Tank W-3 experience indicated that the wall scrapper does not collect sufficient material for analysis.
Date: February 1, 1998
Partner: UNT Libraries Government Documents Department

Manufactured Residential Utility Wall System (ResCore),

Description: This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.
Date: December 31, 1997
Creator: Wendt, Robert; Lundell, Clark & Lau, Tin Man
Partner: UNT Libraries Government Documents Department

Manufactured residential utility wall system (ResCore), overview

Description: This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.
Date: May 1, 1997
Creator: Wendt, R.; Lundell, C. & Lau, T.M.
Partner: UNT Libraries Government Documents Department