230 Matching Results

Search Results

Advanced search parameters have been applied.

Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

Description: Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that, livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.
Date: April 25, 1995
Creator: Libertin, C. R.; Ling-Indeck, L.; Weaver, P.; Chang-Liu, Chin-Mei; Strezoska, V.; Heckert, B. et al.
Partner: UNT Libraries Government Documents Department

Structure-Function Studies on Aspartate Transcarbamoylase and Regulation of Pyrimidine Biosynthesis by a Positive Activator Protein, PyrR in Pseudomonas putida

Description: The regulation of pyrimidine biosynthesis was studied in Pseudomonas putida. The biosynthetic and salvage pathways provide pyrimidine nucleotides for RNA, DNA, cell membrane and cell wall biosynthesis. Pyrimidine metabolism is intensely studied because many of its enzymes are targets for chemotheraphy. Four aspects of pyrimidine regulation are described in this dissertation. Chapter I compares the salvage pathways of Escherichia coli and P. putida. Surprisingly, P. putida lacks several salvage enzymes including nucleoside kinases, uridine phosphorylase and cytidine deaminase. Without a functional nucleoside kinase, it was impossible to feed exogenous uridine to P. putida. To obviate this problem, uridine kinase was transferred to P. putida from E. coli and shown to function in this heterologous host. Chapter II details the enzymology of Pseudomonas aspartate transcarbamoylase (ATCase), its allosteric regulation and how it is assembled. The E. coli ATCase is a dodecamer of two different polypeptides, encoded by pyrBI. Six regulatory (PyrI) and six catalytic (PyrB) polypeptides assemble from two preformed trimers (B3) and three preformed regulatory dimers (I2) in the conserved 2B3:3I2 molecular structure. The Pseudomonas ATCase also assembles from two different polypeptides encoded by pyrBC'. However, a PyrB polypeptide combines with a PyrC. polypeptide to form a PyrB:PyrC. protomer; six of these assemble into a dodecamer of structure 2B3:3C'2. pyrC' encodes an inactive dihydroorotase with pyrB and pyrC' overlapping by 4 bp. Chapter III explores how catabolite repression affects pyrimidine metabolism. The global catabolite repression control protein, Crc, has been shown to affect pyrimidine metabolism in a number of ways. This includes orotate transport for use as pyrimidine, carbon and nitrogen sources. Orotate is important because it interacts with PyrR in repressing the pyr genes. Chapter IV describes PyrR, the positive activator of the pyrimidine pathway. As with other positive activator proteins, when pyrimidine nucleotides are depleted, PyrR binds to ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Kumar, Alan P.
Partner: UNT Libraries

Formation of P{sup +}Q{sub B}{sup -} via B-branch electron transfer in mutant reaction centers.

Description: The crystallographic observation of two symmetry-related branches of electron transfer cofactors in the structure of the bacterial reaction center (RC) 13 years ago [1] remains an enigma in light of experimental observations that show that only the A branch is active in the initial electron transfer steps in wild-type RCs. Unidirectional electron flow has been attributed to localized asymmetries between the A and B branches that lead to differences in: (1) the electronic couplings of the cofactors [2]; (2) the relative electrostatic environments of the cofactors, caused by amino acid differences which modulate the free energies of their charge-separated states [3] and/or create a higher dielectric constant on the active side, resulting in a stronger static field for stabilizing A-branch charge transfer states [4,5]. Some photo-induced bleaching of H{sub B} has been observed, in wild-type RCs following trapping of HA{sub A}{sup {minus}}[6], and in ''hybrid'' RCs where the redox potentials of cofactors were manipulated by pigment exchange [7] or mutagenesis [8]. Transient bleaching of the 530-nm band of H{sub B} was more easily observed in the hybrid RCs because the H{sub A} transition at 545 nm was shifted to {approximately}600 nm due to incorporation of a bacteriochlorophyll, designated ''{beta}'', at the H{sub A} site. No experiments to detect further electron transfer to Q{sub B} were done with either type of modified RCs. Many site-specific mutagenesis experiments have given us insight into the nature and magnitude of the effects that amino acid side chains can exert in tuning the relative energy levels of the cofactors to optimize the balance between forward and reverse reactions, and the large distances through which some of these effects are manifested. In this paper, we show that in mutant RCs of Rhodobacter capsulatus, P{sup +}Q{sub B}{sup {minus}} can be formed in the absence of prior formation ...
Date: August 14, 1998
Creator: Laible, P. D.
Partner: UNT Libraries Government Documents Department

Rubisco Mechanism: Dissection of the Enolization Partial Reaction. Final Report

Description: To test experimentally, the prior theoretical deduction that active-site residue Lys166 of ribulose-bisphosphate carboxylase participates in the carboxylation step of overall catalysis, site-directed mutants and chemically rescued site-directed mutants were characterized by kinetics and product analysis. Although position-166 mutants are able to catalyze normal enolization of ribulose bisphosphate, the enediol intermediate does not undergo carboxylation but rather eliminates phosphate. Furthermore, the chemically rescued mutant (aminoethylation of the severely impaired Lys66Cys mutant) generates a highly active mimic, which displays an enhanced carboxylation/oxygenation partition ratio. These two distinct lines of experimentation document a crucial role of Lys166 in carboxylation and in discrimination between CO{sub 2} and O{sub 2}. To ascertain whether Lys166 functions as an acid or base in facilitation of enolization, the chemically rescued mutant bearing {sup 15}N was titrated by NM R. From pH 6.5-9.5, the amino group of Lys166 remains unprotonated, indicating that it promotes enolization by hydrogen bonding to the ketone group of the substrate.
Date: June 11, 2003
Creator: Hartman, F. C.
Partner: UNT Libraries Government Documents Department

Cellulose Synthesis in Agrobacterium tumefaciens

Description: We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins ...
Date: July 31, 2004
Creator: White, Alan R. & Matthysse, Ann G.
Partner: UNT Libraries Government Documents Department

Development of More Effective Biosurfactants for Enhanced Oil Recovery

Description: The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.
Date: January 16, 2003
Creator: McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R. et al.
Partner: UNT Libraries Government Documents Department

Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

Description: The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.
Date: May 28, 2002
Creator: McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K. et al.
Partner: UNT Libraries Government Documents Department

Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana. Progress report

Description: The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.
Date: December 31, 1991
Partner: UNT Libraries Government Documents Department

Electrospray ionization mass spectrometry for natural and radiation-induced modifications in histone proteins

Description: Chick erythrocyle histone H2B was irradiated in the presence of thymine, the principle cross-linking base recognized in earlier studies, and the products were examined directly by electrospray ionization mass spectrometry (ESI-MS). Following exposure to 5 Gy of ionizing radiation the relative abundance of two unique species were increased by nearly 50% in irradiated samples over background response at the same m/z. The first corresponds to a mass increment increase similar to the expected value for thymine-H2B adduct formation (126.1 Da measured, 125.1 Da calculated). The mass increment increase for the second component (140.7 Da) was less easily explained. Additional dose-yield data are needed to confirm the significance of these changes.
Date: May 1, 1992
Creator: Edmonds, C.G.; Fuciarelli, A.F.; Thrall, B.D. & Springer, D.L.
Partner: UNT Libraries Government Documents Department

GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

Description: The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. This is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.
Date: March 1, 1980
Creator: Parry, G.; Bartholomew, J.C. & Bissell, M.J.
Partner: UNT Libraries Government Documents Department

Lethality in PARP-1/Ku80 double mutant mice reveals physiologicalsynergy during early embryogenesis

Description: Ku is an abundant heterodimeric nuclear protein, consisting of 70-kDa and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP)ribose polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.
Date: September 24, 2002
Creator: Henrie, Melinda S.; Kurimasa, Akihiro; Burma, Sandeep; Menissier-de Murcia, Josiane; de Murcia, Gilbert; Li, Gloria C. et al.
Partner: UNT Libraries Government Documents Department

THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

Description: While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.
Date: June 1, 2007
Creator: Turick, C & Amy Ekechukwu, A
Partner: UNT Libraries Government Documents Department

Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

Description: The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.
Date: September 7, 2009
Creator: Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T. et al.
Partner: UNT Libraries Government Documents Department

Nuclear localization of Rad51B is independent of BRCA2

Description: Human Rad51 is critical for the maintenance of genome stability through its role in the repair of DNA double-strand breaks. Rad51B (Rad51L1/hRec2) is one of the five known paralogs of human Rad51 found in a multi-protein complex with three other Rad51 paralogs, Rad51C, Rad51D and Xrcc2. Examination of EGFP-Rad51B fusion protein in HeLa S3 cells and immunofluorescence in several human cell lines confirms the nuclear localization of Rad51B. This is the first report to detail putative interactions of a Rad51 paralog protein with BRCA2. Utilization of a BRCA2 mutant cell line, CAPAN-1 suggests that Rad51B localizes to the nucleus independent of BRCA2. Although both Rad51B and BRCA2 are clearly involved in the homologous recombinational repair pathway, Rad51B and BRCA2 do not appear to associate directly. Furthermore, mutations in the KKLK motif of Rad51B, amino acid residues 4-7, mislocalizes Rad51B to the cytoplasm suggesting that this is the nuclear localization signal for the Rad51B protein. Examination of wild-type EGFP-Rad51B fusion protein in mammalian cells deficient in Rad51C showed that Rad51B localizes to the nucleus independent of Rad51C; further suggesting that Rad51B, like Rad51C, contains its own nuclear localization signal.
Date: June 28, 2005
Creator: Miller, K A; Hinz, J M; Yamada, A; Thompson, L H & Albala, J S
Partner: UNT Libraries Government Documents Department

Initiation of the TLR4 signal transduction network : deeper understanding for better therapeutics.

Description: The innate immune system represents our first line of defense against microbial pathogens, and in many cases is activated by recognition of pathogen cellular components (dsRNA, flagella, LPS, etc.) by cell surface membrane proteins known as toll-like receptors (TLRs). As the initial trigger for innate immune response activation, TLRs also represent a means by which we can effectively control or modulate inflammatory responses. This proposal focused on TLR4, which is the cell-surface receptor primarily responsible for initiating the innate immune response to lipopolysaccharide (LPS), a major component of the outer membrane envelope of gram-negative bacteria. The goal was to better understand TLR4 activation and associated membrane proximal events, in order to enhance the design of small molecule therapeutics to modulate immune activation. Our approach was to reconstitute the receptor in biomimetic systems in-vitro to allow study of the structure and dynamics with biophysical methods. Structural studies were initiated in the first year but were halted after the crystal structure of the dimerized receptor was published early in the second year of the program. Methods were developed to determine the association constant for oligomerization of the soluble receptor. LPS-induced oligomerization was observed to be a strong function of buffer conditions. In 20 mM Tris pH 8.0 with 200 mM NaCl, the onset of receptor oligomerization occurred at 0.2 uM TLR4/MD2 with E coli LPS Ra mutant in excess. However, in the presence of 0.5 uM CD14 and 0.5 uM LBP, the onset of receptor oligomerization was observed to be less than 10 nM TLR4/MD2. Several methods were pursued to study LPS-induced oligomerization of the membrane-bound receptor, including CryoEM, FRET, colocalization and codiffusion followed by TIRF, and fluorescence correlation spectroscopy. However, there approaches met with only limited success.
Date: September 1, 2010
Creator: Branda, Steven S. (Sandia National Laboratories, Livermore, CA); Hayden, Carl C. (Sandia National Laboratories, Livermore, CA); Sherman, Michael Y. (University of Texas Medical Branch, Galveston, TX); Sasaki, Darryl Yoshio (Sandia National Laboratories, Livermore, CA); Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA) & Kent, Michael Stuart
Partner: UNT Libraries Government Documents Department

DHS Student Report

Description: Throughout this project I have been involved in every step of the protocol. After proper training, I was introduced to the necessary lab techniques for the project. From then on it has been my responsibility to perform the necessary tasks to identify and isolate the mutants. This includes carrying out a detailed protocol of mixing reagents, streaking and incubating plates, inoculating cultures and evaluating any results in order to guide my actions for the next antibiotic concentration level. Simultaneously, I have been running PCR and sequencing reactions on all mutants in order to obtain the genetic sequence of the genes of interest for comparison. Once I have the gene sequences of interest I am able, with the aid of a sequencing program (Sequencher 4.2.2), to analyze the sequences of the mutants against that of a wild type strain. This entails aligning the DNA sequences of a given gene for each of the mutants and locating any base changes from the wild types bacteria's genes. These polymorphisms allow me to identify the QRDR for that particular gene. Depending on whether the polymorphism occurred at a low antibiotic concentration level or high concentration level, we can evaluate whether that change is necessary for low or high-level quinolone resistance. Finally, I will compare the polymorphisms of each mutant at a given antibiotic selection level and evaluate whether B. anthracis consistently acquires resistance through the same polymorphisms or whether the resistance mechanism varies with each new mutant strain. Currently, I am analyzing the sequence data for stage one mutants, while simultaneously continuing the lab work necessary to select for stage two mutants. After I have left, the personnel at the lab that I've been working with at LLNL will continue this project. By the end of this experiment, we hope to corroborate the suggested ...
Date: July 23, 2007
Creator: Wynne, Elizabeth K.
Partner: UNT Libraries Government Documents Department

The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses. BMC Research Notes 2010, 3:77

Description: Chemical-in-plug assays are commonly used to study bacterial chemotaxis, sometimes in the absence of stringent controls. We report that non-chemotactic and non-motile mutants in two distinct bacterial species (Shewanella oneidensis and Helicobacter pylori) show apparent zones of accumulation or clearing around test plugs containing potential attractants or repellents, respectively. Our results suggest that the chemical-in-plug assay should be used with caution, that non-motile or non-chemotactic mutants should be employed as controls, and that results should be confirmed with other types of assays.
Date: March 1, 2010
Creator: Li, Jun; Go, Alvin C; Ward, Mandy J & Ottemann, Karen M
Partner: UNT Libraries Government Documents Department

Response of Desulfovibrio vulgaris to Alkaline Stress

Description: The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).
Date: November 30, 2007
Creator: Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D. et al.
Partner: UNT Libraries Government Documents Department

A Link between Meiotic Prophase Progression and CrossoverControl

Description: During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.
Date: July 6, 2005
Creator: Carlton, Peter M.; Farruggio, Alfonso P. & Dernburg, Abby F.
Partner: UNT Libraries Government Documents Department

The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

Description: The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.
Date: May 12, 2008
Creator: Meux, Susan C.
Partner: UNT Libraries Government Documents Department