482 Matching Results

Search Results

Advanced search parameters have been applied.

Unreviewed Disposal Question Evaluation: Disposal of 0.2 Curie/gallon MAVRC Project Equipment in Vault 1

Description: The Saltstone Facility 0.2 Curie/gallon MAVRC (Mixer At Vault Roof Concept) Project will utilize various pieces of process equipment that have not been analyzed from a Performance Assessment perspective for future disposal. The proposed activity will involve the disposal of Saltstone process equipment in an empty Vault 1 cell and encasing the equipment in clean (nonradioactive) grout. An examination of this activity indicates that the disposal of up to 20 pieces of each specified component should not affect the assumptions, results, and conclusions of the approved Performance Assessment (PA) and Special Analyses (SA) for Saltstone, and that the activity is within the bounds of the Disposal Authorization Statement (DAS).
Date: July 7, 2005
Creator: Millings, Margaret R.
Partner: UNT Libraries Government Documents Department

EVENT TREE ANALYSIS AT THE SAVANNAH RIVER SITE: A CASE HISTORY

Description: At the Savannah River Site (SRS), a Department of Energy (DOE) installation in west-central South Carolina there is a unique geologic stratum that exists at depth that has the potential to cause surface settlement resulting from a seismic event. In the past the particular stratum in question has been remediated via pressure grouting, however the benefits of remediation have always been debatable. Recently the SRS has attempted to frame the issue in terms of risk via an event tree or logic tree analysis. This paper describes that analysis, including the input data required.
Date: May 25, 2009
Creator: Williams, R
Partner: UNT Libraries Government Documents Department

Contamination Control During In Situ Jet Grouting for Application in a Buried Transuranic Waste Site

Description: Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) have developed means of contamination control associated with jet-grouting buried radioactive mixed waste sites. Finely divided plutonium/americium oxide particulate can escape as the drill stem of the jet-grouting apparatus exits a waste deposit in preparation for insertion in another injection hole. In studying various options for controlling this potential contamination, engineers found that an elaborate glovebox/drill string shroud system prevents contaminants from spreading. Researchers jet-grouted a pit with nonradioactive tracers to simulate the movement of plutonium fines during an actual application. Data from the testing indicate that the grout immobilizes the tracer material by locking it up in particles large enough to resist aerosolization.
Date: February 1, 2003
Creator: Loomis, Guy George & Jessmore, James Joseph
Partner: UNT Libraries Government Documents Department

Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

Description: This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.
Date: September 25, 2008
Creator: Delegard, Calvin H. & Schmidt, Andrew J.
Partner: UNT Libraries Government Documents Department

DEEP VADOSE ZONE TREATABILITY TEST PLAN

Description: {sm_bullet} Treatability test plan published in 2008 {sm_bullet} Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) {sm_bullet} Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing
Date: July 2, 2009
Creator: CHRONISTER, GB & TRUEX, MJ
Partner: UNT Libraries Government Documents Department

Review of monitoring wells exhibiting elevated pH in F and H Area

Description: Several of the monitoring wells installed at the Savannah River Plant in the past few years exhibit pH values of 8 or higher. These pHs are significantly higher than average values for the aquifers involved and are also higher than expected for natural waters. They are also inconsistent with observations in nearby wells. It is therefore suspected that the high pHs are not representative of true aquifer conditions. Two previous studies conducted at SRP (Price, 1984; Schreeder, 1986) conclude that high pH readings in M-Area monitoring wells and Z-Area piezometers are the result of contact between groundwater and grout. Price bases his conclusion on water chemistry. Schreeder`s evidence is the relationship between pH and amount of water withdrawn from the piezometers--an initially high pH drops as more water is removed. This conclusion is supported by laboratory measurements on water samples collected from cement-bentonite grout which show pH values of 13. This investigation was undertaken to evaluate contamination by grout and drilling fluid as a possible cause of elevated pH in monitoring wells at SRP and to develop techniques to rehabilitate the affected wells. FSB and HSB wells were used in this study.
Date: July 1988
Creator: Blackmer, G. C.
Partner: UNT Libraries Government Documents Department

Grouting guidelines for Hanford Tanks Initiative cone penetrometer borings

Description: Grouting of an open cone penetrometer (CP) borehole is done to construct a barrier that prevents the vertical migration of fluids and contaminants between geologic units and aquifers intersected by the boring. Whether to grout, the types of grout, and the method of deployment are functions of the site-specific conditions. This report recommends the strategy that should be followed both before and during HTI [Hanford Tanks Initiative] CP deployment to decide specific borehole grouting needs at Hanford SST farms. Topics discussed in this report that bear on this strategy include: Regulatory guidance, hydrogeologic conditions, operational factors, specific CP grouting deployment recommendations.
Date: May 18, 1998
Creator: Iwatate, D.F.
Partner: UNT Libraries Government Documents Department

Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

Description: During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.
Date: May 1997
Partner: UNT Libraries Government Documents Department

Alternative disposal options for alpha-mixed low-level waste

Description: This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.
Date: December 1, 1995
Creator: Loomis, G.G. & Sherick, M.J.
Partner: UNT Libraries Government Documents Department

Pressure grouting of fractured basalt flows

Description: This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.
Date: April 1, 1996
Creator: Shaw, P.; Weidner, J.; Phillips, S. & Alexander, J.
Partner: UNT Libraries Government Documents Department

Microbial degradation of low-level radioactive waste. Final report

Description: The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.
Date: June 1, 1996
Creator: Rogers, R.D.; Hamilton, M.A.; Veeh, R.H. & McConnell, J.W. Jr
Partner: UNT Libraries Government Documents Department

Mathematical modeling of permeation grouting and subsurface barrier performance

Description: The injection of solution grouts into the subsurface can be used to form underground barriers for the containment of contaminants. The technology requires identifying suitable grout materials, specifically fluids which exhibit a large increase in viscosity after injection and eventually solidify after a controllable period, thus sealing permeable zones. The authors have developed a new fluid property module for the reservoir simulator TOUGH2 to model grout injection, taking into account the increase of liquid viscosity as a function of time and gel concentration. They have also incorporated into the simulator a model which calculates soil hydraulic properties after solidification of the gel within the pore space. The new fluid property module has been used to design and analyze laboratory experiments and field pilot tests in saturated and unsaturated formations under a variety of subsurface conditions. These applications include modeling barrier emplacement in highly heterogeneous soils in the vadose zone, grout injection into the saturated zone in combination with extraction wells for flow control, the design of verification strategies, and the analysis of barrier performance. In this paper the authors discuss the modeling approach and present simulation results of multiple grout injections into a heterogeneous, unsaturated formation.
Date: September 1, 1996
Creator: Finsterle, S.; Oldenburg, C.M.; James, A.L.; Pruess, K. & Moridis, G.J.
Partner: UNT Libraries Government Documents Department

Conversion of historic waste treatment process for production of an LDR and WIPP/WAC compliant TRU wasteform

Description: In support of the historic weapons production mission at the, Rocky Flats Environmental Technology Site (RFETS), several liquid waste treatment processes were designed, built and operated for treatment of plutonium-contaminated aqueous waste. Most of these @ processes ultimately resulted in the production of a cemented wasteform. One of these treatment processes was the Miscellaneous Aqueous Waste Handling and Solidification Process, commonly referred to as the Bottlebox process. Due to a lack of processing demand, Bottlebox operations were curtailed in late 1989. Starting in 1992, a treatment capability for stabilization of miscellaneous, Resource Conservation and Recovery Act (RCRA) hazardous, plutonium-nitrate solutions was identified. This treatment was required to address potentially unsafe storage conditions for these liquids. The treatment would produce a TRU wasteform. It thus became necessary to restart the Bottlebox process, but under vastly different conditions and constraints than existed prior to its curtailment. This paper provides a description of the historical Bottlebox process and process controls; and then describes, in detail, all of the process and process control changes that were implemented to convert the treatment system such that a Waste Isolation Pilot Plant (WIPP) and a Land Disposal Requirements (LDR) compliant wasteform would be produced. The rationale for imposition of LDRs on a TRU wasteform is discussed. In addition, this paper discusses the program changes implemented to meet modem criticality safety, Conduct of Operations, and Department of Energy Nuclear Facility restart requirements.
Date: March 1, 1997
Creator: Dunn, R.P. & Wagner, R.A.
Partner: UNT Libraries Government Documents Department

Demonstration of close-coupled barriers for subsurface containment of buried waste

Description: The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification.
Date: December 1, 1996
Creator: Dwyer, B.P.; Heiser, J. & Stewart, W.
Partner: UNT Libraries Government Documents Department

Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination

Description: Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displaced water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.
Date: March 1, 1997
Creator: Hepworth, H.K.; Davidson, J.S. & Hooyman, J.L.
Partner: UNT Libraries Government Documents Department

Tank closure reducing grout

Description: A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.
Date: April 18, 1997
Creator: Caldwell, T. B.
Partner: UNT Libraries Government Documents Department

Performance of cement-based seal-system components in a waste-disposal environment

Description: A grout based on portland cement, Class F fly ash, and bentonite clay was developed as part of the closure system of shallow subsurface structures for disposal of low-activity radioactive wastes. Heat output, volume change, and compressive strength of the sealing grout were monitored with time, at elevated temperature, and in physical models, to determine if this closure grout could maintain adequate volume stability and other required physical properties in the internal environment of the disposal structure. To determine if contact with an alkaline liquid waste would cause chemical deterioration of the sealing grout, cured specimens were immersed in a liquid waste simulant containing high concentrations of sodium and aluminum salts. After 21 days at 60 C, specimens increased in mass without significant changes in volume. XRD revealed crystallization of sodium aluminum silicate hydrate. The new phase has an XRD pattern similar to the commercial synthetic zeolite Losod. Scanning electron microscopy used with x-ray fluorescence showed that clusters of this phase had formed in grout pores, to increase rout density and decrease its effective porosity. Testing was repeated at 100 C for 5 days using a simulant containing sodium hydroxide and aluminum nitrate and results were similar. Physical and chemical tests indicate acceptable performance of this grout as a seal-system component.
Date: December 31, 1994
Creator: Malone, P.G.; Wakeley, L.D.; Burkes, J.P. & McDaniel, E.W.
Partner: UNT Libraries Government Documents Department

Low-pressure, single-point grout injection for tank heel sludge mixing and in-situ immobilization

Description: This report describes tests conducted in an approximately 9-ft diameter test tank situated outside the 336 building in Hanford`s 300 area. The tests were performed to measure the ability of jets of grout slurry to mobilize and mix simulated tank sludge. The technique is intended for in situ immobilization of tank waste heels. The current approach uses a single, rotated, larger-diameter nozzle driven at lower pressure. Due to the larger diameter, the potential for plugging is reduced and the effective radius around an injection point over which the jet is effective in mobilizing sludge from the tank bottom can be made larger. A total of three grout injection tests were conducted in a 9-ft diameter tank. In each case, a 2-in. layer of kaolin clay paste was placed on a dry tank floor to simulate a sludge heel. The clay was covered with 4 inches of water. The grout slurry, consisting of Portland cement, class F fly ash, and eater, was prepared and delivered by an offsite vendor. In the third test, the sludge in half of the tank was replaced by a layer of 20x50 mesh zeolite, and bentonite clay was added to the grout formulation. After injection, the grout was allowed to set and then the entire grout monolith was manually broken up and excavated using a jack hammer. Intact pieces of clay were visually apparent due to a sharp color contrast between the grout and clay. Remaining clay deposits were collected and weighed and suspended clay pieces within the monolith were photographed. The mobilization performance of the grout jets exceeded expectations.
Date: September 1, 1998
Creator: Whyatt, G.A. & Hymas, C.R.
Partner: UNT Libraries Government Documents Department

High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, July 1--September 30, 1997

Description: During this quarter, the majority of activity focused on grout emplacement at the Lodestar Energy Inc. (formerly Costain Coal Co.) surface mine auger holes described in the previous report. Specifically, two different types of grout pumps were investigated: a piston pump used in previous demonstrations, and a progressive cavity pump. The latter is currently utilized for grouting in underground coal mines, is relatively small and portable, and is capable of receiving dry material (e.g., fly ash) and water, mixing it to produce a grout, and pumping the grout at high pressure. It is therefore worthwhile to investigate it`s potential use in auger mine filling. Several field demonstrations were conducted using the different pumps. Numerous problems were encountered when using the progressive cavity pump, all of which were related to its inability to handle the highly reactive and heterogeneous FBC fly ash. Even relatively small ash agglomerates (<1 in. in diameter), which were not a problem for the larger piston pump, caused blockages in the progressive cavity pump which not only proved extremely difficult to clear, but also resulted in significant mechanical failures. Furthermore, mixing of dry fly ash with water within the progressive cavity pump was inconsistent and difficult to control. Consequently, the pump was unable to completely fill even a single auger hole. It was found that a large proportion of bed ash in the grout generated a large amount of heat and caused early stiffening of the material. During the experiments, cylinders of grout were prepared for compressive strength testing, and moisture contents were determined on-site. A thermocouple assembly was also constructed to record grout temperatures within an auger hole.
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

International Containment Technology Conference: proceedings

Description: This document contains the manuscripts of the papers and posters presented at the 1997 International Containment Technology Conference and Exhibition. These manuscripts represent a valuable compilation of information and data on the environmental challenges and technology-based solutions associated with containment technologies. The purpose of the conference was to promote the advancement of containment technologies by providing a forum from which participants from related disciplines could meet to exchange ideas and information on recent developments. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

ICPP calcined solids storage facility closure study. Volume III: Engineering design files

Description: The following information was calculated to support cost estimates and radiation exposure calculations for closure activities at the Calcined Solids Storage Facility (CSSF). Within the estimate, volumes were calculated to determine the required amount of grout to be used during closure activities. The remaining calcine on the bin walls, supports, piping, and floor was also calculated to approximate the remaining residual calcine volumes at different stages of the removal process. The estimates for remaining calcine and vault void volume are higher than what would actually be experienced in the field, but are necessary for bounding purposes. The residual calcine in the bins may be higher than was is experienced in the field as it was assumed that the entire bin volume is full of calcine before removal activities commence. The vault void volumes are higher as the vault roof beam volumes were neglected. The estimations that follow should be considered rough order of magnitude, due to the time constraints as dictated by the project`s scope of work. Should more accurate numbers be required, a new analysis would be necessary.
Date: February 1, 1998
Partner: UNT Libraries Government Documents Department

Process modeling for the Integrated Nonthermal Treatment System (INTS) study

Description: This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.
Date: April 1, 1997
Creator: Brown, B.W.
Partner: UNT Libraries Government Documents Department

Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

Description: Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options.
Date: December 31, 1997
Creator: Gilliam, T.M. & Spence, R.D.
Partner: UNT Libraries Government Documents Department

In-situ stabilization of TRU/mixed waste project at the INEEL

Description: Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.
Date: August 1, 1997
Creator: Milian, L. W.; Heiser, J. H.; Adams, J. W. & Rutenkroeger, S. P.
Partner: UNT Libraries Government Documents Department