236 Matching Results

Search Results

Advanced search parameters have been applied.

Computational Needs for the Next Generation Electric Grid Proceedings

Description: The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as ...
Date: October 5, 2011
Creator: Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian et al.
Partner: UNT Libraries Government Documents Department

Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States

Description: This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the U.S. to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the U.S. in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 absent the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the U.S. during the construction phase of these wind projects, and 3,860 longterm FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.
Date: May 5, 2010
Creator: Bolinger, Mark; Wiser, Ryan & Darghouth, Naim
Partner: UNT Libraries Government Documents Department

Terrestrial biogeochemical feedbacks in the climate system: from past to future

Description: The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.
Date: January 5, 2010
Creator: Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J. et al.
Partner: UNT Libraries Government Documents Department

Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS) (Supplementary Info)

Description: Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.
Date: September 5, 2011
Creator: Aerosol Dynamics Inc.,; Aerodyne Research, Inc.,; Tofwerk AG, Thun, Switzerland; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H. et al.
Partner: UNT Libraries Government Documents Department

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

Description: A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).
Date: November 5, 2010
Creator: Technology, Massachusetts Institute of; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R. et al.
Partner: UNT Libraries Government Documents Department

Ferromagnetism in Mn-Implanted Epitaxially Grown Ge on Si(100)

Description: We have studied ferromagnetism of Mn-implanted epitaxial Ge films on silicon. The Ge films were grown by ultrahigh vacuum chemical vapor deposition using a mixture of germane (GeH{sub 4}) and methylgermane (CH{sub 3}GeH{sub 3}) gases with a carbon concentration of less than 1 at. %, and observed surface rms roughness of 0.5 nm, as measured by atomic force microscopy. Manganese ions were implanted in epitaxial Ge films grown on Si (100) wafers to an effective concentration of 16, 12, 6, and 2 at. %. Superconducting quantum interference device measurements showed that only the three highest Mn concentration samples are ferromagnetic, while the fourth sample, with [Mn] = 2 at. %, is paramagnetic. X-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements indicate that localized Mn moments are ferromagnetically coupled below the Curie temperature. Isothermal annealing of Mn-implanted Ge films with [Mn] = 16 at. % at 300 C for up to 1200 s decreases the magnetization but does not change the Curie temperature, suggesting that the amount of the magnetic phase slowly decreases with time at this anneal temperature. Furthermore, transmission electron microscopy and synchrotron grazing incidence x-ray diffraction experiments show that the Mn-implanted region is amorphous, and we believe that it is this phase that is responsible for the ferromagnetism. This is supported by our observation that high-temperature annealing leads to recrystallization and transformation of the material into a paramagnetic phase.
Date: January 5, 2011
Creator: Guchhait, S.; Jamil, M.; Ohldag, H.; Mehta, A.; Arenholz, E.; Lian, G. et al.
Partner: UNT Libraries Government Documents Department

Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation

Description: X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.
Date: July 5, 2010
Creator: Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P. et al.
Partner: UNT Libraries Government Documents Department

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

Description: This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.
Date: May 5, 2010
Creator: Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron et al.
Partner: UNT Libraries Government Documents Department

Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

Description: There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.
Date: April 5, 2011
Creator: Kostko, Oleg; Takahashi, Lynelle K. & Ahmed, Musahid
Partner: UNT Libraries Government Documents Department

OH-initiated heterogeneous aging of highly oxidized organic aerosol

Description: The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.
Date: December 5, 2011
Creator: Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E. et al.
Partner: UNT Libraries Government Documents Department

A Proposal to Upgrade the Silicon Strip Detector

Description: The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)
Date: November 5, 2007
Creator: Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux et al.
Partner: UNT Libraries Government Documents Department

An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory

Description: The Sudbury Neutrino Observatory (SNO) used an array of {sup 3}He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active ({nu}{sub x}) {sup 8}B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields {Delta}m{sup 2} = 7.94{sub -0.26}{sup +0.42} x 10{sup -5} eV{sup 2} and {theta} = 33.8{sub -1.3}{sup +1.4} degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.
Date: June 5, 2008
Creator: Colla, SNO
Partner: UNT Libraries Government Documents Department

Geometric transitions and D-term SUSY breaking

Description: We propose a new way of using geometric transitions to study metastable vacua in string theory and certain confining gauge theories. The gauge theories in question are N=2 supersymmetric theories deformed to N=1 by superpotential terms. We first geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles in noncompact Calabi-Yau geometries, such that the central charges of the branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate these configurations to dual Calabi-Yaus with fluxes, where H_RR, H_NS and dJ are all nonvanishing. We argue that the dual geometry can be effectively used to study the resulting non-supersymmetric, confining vacua
Date: November 5, 2007
Creator: Aganagic, Mina; Aganagic, Mina & Beem, Christopher
Partner: UNT Libraries Government Documents Department

Time-of-flight flow imaging using NMR remote detection

Description: A time-of-flight imaging technique is introduced to visualize fluid flow and dispersion through porous media using NMR. As the fluid flows through a sample, the nuclear spin magnetization is modulated by RF pulses and magnetic field gradients to encode the spatial coordinates of the fluid. When the fluid leaves the sample, its magnetization is recorded by a second RF coil. This scheme not only facilitates a time-dependent imaging of fluid flow, it also allows a separate optimization of encoding and detection subsystems to enhance overall sensitivity. The technique is demonstrated by imaging gas flow through a porous rock.
Date: May 5, 2005
Creator: Granwehr, Josef; Harel, Elad; Han, Song-I; Garcia, Sandra; Pines,Alex; Sen, Pabitra N. et al.
Partner: UNT Libraries Government Documents Department

Expansion of radiative cooling of the laser induced plasma

Description: To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.
Date: May 5, 2006
Creator: Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph & Russo,Richard
Partner: UNT Libraries Government Documents Department

Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering

Description: Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.
Date: June 5, 2006
Creator: Mohamed, Sodky H. & Anders, Andre
Partner: UNT Libraries Government Documents Department

3D-Simulation Studies of SNS Ring Doublet Magnets

Description: The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.
Date: May 5, 2005
Creator: Wang, J.G.; N., Tsoupas & Venturini, M.
Partner: UNT Libraries Government Documents Department

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples

Description: Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.
Date: December 5, 2002
Creator: Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C. et al.
Partner: UNT Libraries Government Documents Department

Geologic Storage of Greenhouse Gases: Multiphase andNon-isothermal Effects, and Implications for Leakage Behavior

Description: Storage of greenhouse gases, primarily CO2, in geologic formations has been proposed as a means by which atmospheric emissions of such gases may be reduced (Bachu et al., 1994; Orr, 2004). Possible storage reservoirs currently under consideration include saline aquifers, depleted or depleting oil and gas fields, and unmineable coal seams (Baines and Worden, 2004). The amount of CO2 emitted from fossil-fueled power plants is very large, of the order of 30,000 tons per day (10 million tons per year) for a large 1,000 MW coal-fired plant (Hitchon,1996). In order to make a significant impact on reducing emissions, very large amounts of CO2 would have to be injected into subsurface formations, resulting in CO2 disposal plumes with an areal extent of order 100 km2 or more (Pruess et al., 2003). It appears inevitable, then, that such plumes will encounter imperfections in caprocks, such as fracture zones or faults, that would allow CO2 to leak from the primary storage reservoir. At typical subsurface conditions of temperature and pressure, CO2 is always less dense than aqueous fluids; thus buoyancy forces will tend to drive CO2 upward, towards the land surface, whenever adequate (sub-)vertical permeability is available. Upward migration of CO2 could also occur along wells, including pre-existing wells in sedimentary basins where oil and gas exploration and production may have been conducted (Celia et al., 2004), or along wells drilled as part of a CO2 storage operation. Concerns with leakage of CO2 from a geologic storage reservoir include (1) keeping the CO2 contained and out of the atmosphere, (2) avoiding CO2 entering groundwater aquifers, (3)asphyxiation hazard if CO2 is released at the land surface, and (4) the possibility of a self-enhancing runaway discharge, that may culminate in a ''pneumatic eruption'' (Giggenbach et al., 1991). The manner in which CO2 may leak from ...
Date: August 5, 2005
Creator: Pruess, Karsten
Partner: UNT Libraries Government Documents Department

Preparation of pHEMA-CP composites with high interfacial adhesionvia template-driven mineralization

Description: We report a template-driven nucleation and mineral growth process for the high-affinity integration of calcium phosphate (CP) with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of crosslinked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface along with extensive calcification of the hydrogel interior. External factors such as the heating rate, the agitation of the mineral stock solution and the duration of the process that affect the outcome of the mineralization were investigated. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.
Date: December 5, 2002
Creator: Song, Jie; Saiz, Eduardo & Bertozzi, Carolyn R.
Partner: UNT Libraries Government Documents Department

Who Owns Renewable Energy Certificates? An Exploration of PolicyOptions and Practice

Description: Renewable energy certificates (RECs) represent the bundle of information that describes the characteristics of renewable electricity generation, and may be (and increasingly are) sold separately from the underlying electricity itself. RECs are a relatively new phenomenon, emerging as a tradable commodity in voluntary markets in the late 1990s, and gaining strength as a means of compliance with various state policy requirements affecting renewable generation in the early 2000s (Holt and Bird 2005). Twenty states and Washington, D.C. now have mandatory renewables portfolio standard (RPS) obligations, and most of these may be satisfied by owning and retiring RECs. Many states also have fuel source and emissions disclosure requirements, for which RECs are useful. Even where state policy does not allow unbundled and fully tradable RECs to meet these requirements, RECs may still be used as an accounting and verification tool (REC tracking systems are in place or under development in many regions of the U.S.). These applications, plus REC trading activity in support of voluntary green claims, give rise to potential ''double counting'' to the extent that the purchaser of the RECs and the purchaser of the underlying electricity both make claims to the renewable energy attributes of the facility in question (Hamrin and Wingate 2003). When renewable electricity is sold and purchased, an important question therefore arises: ''Who owns the RECs created by the generation of renewable energy?'' In voluntary transactions, most agree that the question of REC ownership can and should be negotiated between the buyer and the seller privately, and should be clearly established by contract. Claims about purchasing renewable energy should only be made if REC ownership can be documented. In many other cases, however, renewable energy transactions are either mandated or encouraged through state or federal policy. In these cases, the issue of REC ownership must ...
Date: April 5, 2006
Creator: Holt, Edward A.; Wiser, Ryan & Bolinger, Mark
Partner: UNT Libraries Government Documents Department

Low Mach Number Modeling of Type Ia Supernovae

Description: We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional an elastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.
Date: August 5, 2005
Creator: Almgren, Ann S.; Bell, John B.; Rendleman, Charles A. & Zingale,Michael
Partner: UNT Libraries Government Documents Department

Emerging Energy-Efficient Technologies for Industry

Description: U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.
Date: May 5, 2005
Creator: Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna et al.
Partner: UNT Libraries Government Documents Department