9 Matching Results

Search Results

Advanced search parameters have been applied.

1.5-GEV FFAG ACCELERATOR AS INJECTOR TO THE BNL-AGS.

Description: A 1.5-GeV Fixed-Field Alternating-Gradient (FFAG) proton Accelerator is being studied as a new injector to the Alternating-Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The major benefit is that it would considerably shorten the overall AGS acceleration cycle, and, consequently, may yield to an improvement of beam stability, intensity and size. The AGS-FFAG will also facilitate the proposed upgrade of the AGS facility toward a 1-MW average proton beam power at the top energy of 28 GeV. This paper describes the FFAG design for acceleration of protons from 400 MeV to 1.5 GeV, with the same circumference of the AGS, and entirely housed in the AGS tunnel.
Date: July 5, 2004
Creator: Ruggiero, A. G.; Blaskiewicz, M.; Trbojevic, D.; Tsoupas, N. & Zhang, W.
Partner: UNT Libraries Government Documents Department

ELECTRON ACCELERATION FOR E-RHIC WITH THE NON-SCALING FFAG.

Description: A non-scaling FFAG lattice design to accelerate electrons from 3.2 to 10 GeV is described. This is one of possible solutions for the future electron-ion collider (eRHIC) at Relativistic Heavy Ion Collier (RHIC) at Brookhaven National Laboratory (BNL). The e-RHIC proposal requires acceleration of the low emittance electrons up to energy of 10 GeV. To reduce a high cost of the full energy super-conducting linear accelerator an alternative approach with the FFAG is considered. The report describes the 1277 meters circumference non-scaling FFAG ring. The Courant-Snyder functions, orbit offsets, momentum compaction, and path length dependences on momentum during acceleration are presented.
Date: July 5, 2004
Creator: TRBOJEVIC,D. BALSKIEWICZ,M. COURANT,E. D. ET AL.
Partner: UNT Libraries Government Documents Department

NON-SCALING FIXED FIELD GRADIENT OPTIMIZATION.

Description: Optimization of the non-scaling FFAG lattice for the specific application of the muon acceleration with respect to the minimum orbit offsets, minimum path length and smallest circumference is described. The short muon lifetime requires fast acceleration. The acceleration is in this work assumed to be with super-conducting cavities. This sets up a condition of acceleration at the top of the sinusoidal RF wave.
Date: October 13, 2004
Creator: TRBOJEVIC, D.
Partner: UNT Libraries Government Documents Department