10 Matching Results

Search Results

Advanced search parameters have been applied.

Chromatic analysis and possible local chromatic correction in RHIC

Description: In this article we will answer the following questions for the RHIC polarized proton (p-p) and Au-Au run lattices: (1) what are the sources of second order chromaticities? (2) what is the dependence of second order chromaticity on the on-momentum {beta}-beat? (3) what is the dependence of second order chromaticity on {beta}* at IP6 and IP8? To answer these questions, we use the perturbation theory to numerically calculate the contributions of each quadrupole and sextupole to the first, second, and third order chromaticities. Possible local methods to reduce chromatic effects in RHIC ring are shortly discussed.
Date: March 28, 2011
Creator: Luo, Y.; Fischer, W.; Gu, X. & Trbojevic, D.
Partner: UNT Libraries Government Documents Department

Comparison of accelerator technologies for use in ADSS

Description: Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of a SRF proton linac is evaluated. Future accelerator R&D required to improve each candidate accelerator design is discussed. ADS fission has interesting potential for electric power generation and also for destruction of long-lived actinide waste produced by conventional critical reactors. ADS systems offer several interesting advantages in comparison to critical reactors: (1) ADS provides greater flexibility for the composition and placement of fissile, fertile, or fission product waste within the core, and require less enrichment of fissile content; (2) The core can be operated with a reactivity k{sub eff} that cannot reach criticality by any failure mode; (3) When the beam is shut off fission ceases in the core; (4) Coupling the fast neutron spectrum of the spallation drive to fast core neutronics offers a basis for more complete burning of long-lived actinides; and (5) ADS designs can provide sufficient thermal mass that meltdown cannot occur from radioactive heat after fission is stopped. In order to drive a {approx}GW{sub e} fission core a CW proton beam of >700 MeV and {approx}15 MW beam power is required. A previous study of the accelerator performance required for ADS systems concluded that present accelerator performance is approaching those requirements, but accelerator system cost and reliability remain particular concerns. The obvious candidates ...
Date: March 28, 2011
Creator: Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P. et al.
Partner: UNT Libraries Government Documents Department

High luminosity electron-hadron collider eRHIC

Description: We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.
Date: March 28, 2011
Creator: Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I. et al.
Partner: UNT Libraries Government Documents Department

The effects of betatron phase advances on beam-beam and its compensation in RHIC

Description: In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.
Date: March 28, 2011
Creator: Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S. & Trbojevic, D.
Partner: UNT Libraries Government Documents Department

Medium energy heavy ion operations at RHIC

Description: As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.
Date: March 28, 2011
Creator: Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M. et al.
Partner: UNT Libraries Government Documents Department

Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC

Description: We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC's 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC a stand-along, 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linac's straight sections with splitters and combiners.
Date: March 28, 2011
Creator: Trbojevic, D.; Beebe-Wang, J.; Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.; Kayran, D. et al.
Partner: UNT Libraries Government Documents Department

Optics-free x-ray FEL oscillator

Description: There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.
Date: March 28, 2011
Creator: Litvinenko, V.N.; Hao, Y.; Kayran, D. & Trbojevic, D.
Partner: UNT Libraries Government Documents Department

RHIC Polarized proton operation

Description: The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the ...
Date: March 28, 2011
Creator: Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M. et al.
Partner: UNT Libraries Government Documents Department

A LATTICE FOR THE 50 GEV MUON COLLIDER RING.

Description: A resent progress report on the lattice design of the 50-50 GeV muon collider is presented. The ring circumference needs to be as small as possible due to the short lifetime of the 50 GeV muons. The background at the detector is affected by the continuous decay of muons into electrons which requires a dipole between the high focusing quadrupoles and the detector. To obtain a luminosity on the order of 1 x 10{sup 33} cm{sup {minus}2} S{sup {minus}1} it is required to have beam intensities on the order of 1 x 10{sup 12} particles per bunch. The rms momentum spread of the beam is equal to 0.12% and the beta functions at the interaction point are equal to 4 cm. The maxima of the betatron functions at these quadrupoles are 1300 m, resulting in large chromaticities which must be corrected by local chromatic correction. Pairs of horizontal and vertical chromatic sextupoles are located at locations where the corresponding betatron functions are 100 m and the values of the horizontal dispersion functions are 3 and 2 m, respectively. They are carefully placed so that most of their nonlinear effects are canceled. The dynamic aperture is larger than 7 times the mean size of the beam for the momentum offsets larger than {minus}6 and +10 sigmas.
Date: June 28, 1998
Creator: TRBOJEVIC,D.
Partner: UNT Libraries Government Documents Department