233 Matching Results

Search Results

Advanced search parameters have been applied.

Impurity control in near-term tokamak reactors

Description: Several methods for reducing impurity contamination in near-term tokamak reactors by modifying the first-wall surface with a low-Z or low-sputter material are examined. A review of the sputtering data and an assessment of the technological feasibility of various wall modification schemes are presented. The power performance of a near-term tokamak reactor is simulated for various first-wall surface materials, with and without a divertor, in order to evaluate the likely effect of plasma contamination associated with these surface materials.
Date: October 1, 1976
Creator: Stacey, W. M. Jr.; Smith, D. L. & Brooks, J. N.
Partner: UNT Libraries Government Documents Department

Neutronics of a D-Li neutron source: An overview

Description: The importance of having a high energy (14 MeV) neutron source for fusion materials testing is widely recognized. The availability of a test volume with easy accessibility, with a radiation environment similar to the one expected for a fusion reactor, and with dimensions large enough to accommodate several small samples or a small blanket mock-up are requirements impossible to meet with the existing reactors and irradiation facilities. A D-Li neutron source meets the above mentioned requirements and can be built today with well known technology. This paper describes some relevant topics related to beam target configuration, neutron flux spectrum, and nuclear responses for a D-Li neutron source. The target-beam configuration is analyzed for different beam cross sectional areas and trade-offs between the area of the beam and related quantities such as available volume for testing, peak fluxes, and flux or nuclear responses gradient are presented. The conclusion is that the D-Li neutron source has the necessary characteristics to be the option of choice for IFMIF.
Date: November 1, 1993
Creator: Gomes, I. C. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Characteristics of the neutron flux from a D-Li neutron source

Description: A D-Li neutron source produces a high flux of neutrons which can be used for testing fusion materials. The characteristics exhibited by the neutron flux inside the test assembly volume of a D-Li neutron source irradiation facility is a function of several design options, such as deuteron energy, beam current, beam cross sectional area, and lithium target configuration, among others. The influence of each of these parameters on the overall performance of the machine, in terms of best results for irradiation of materials for fusion applications, can be inferred by scoping their impact on the uncollided neutron flux magnitude and distribution. The first part of this paper describes an analysis performed on the uncollided neutron flux (without material inside the test assembly region) for different beam-target configurations for determining the effect of varying the elements of the configuration on the uncollided neutron flux gradient. The second section deals with the neutron energy spectrum from the D-Li reaction and a brief discussion on {open_quotes}fusion reactor spectrum{close_quotes} is also presented. In the third section results from calculations of the volume with uncollided neutron above a threshold value are presented.
Date: July 1, 1994
Creator: Gomes, I. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Characterization of nuclear transmutations in materials irradiated test facilities

Description: This study presents a comparison of nuclear transmutation rates for candidate fusion first wall/blanket structural materials in available, fission test reactors with those produced in a typical fusion spectrum. The materials analyzed in this study include a vanadium alloy (V-4Cr-4Ti), a reduced activation martensitic steel (Fe-9Cr-2WVTa), a high conductivity copper alloy (Cu-Cr-Zr), and the SiC compound. The fission irradiation facilities considered include the EBR-II fast reactor, and two high flux mixed spectrum reactors, HFIR (High Flux Irradiation Reactor) and SM-3 (Russian reactor). The transmutation and dpa rates that occur in these test reactors are compared with the calculated transmutation and dpa rates characteristic of a D-T fusion first wall spectrum. In general, past work has shown that the displacement damage produced in these fission reactors can be correlated to displacement damage in a fusion spectrum; however, the generation of helium and hydrogen through threshold reactions [(n,x,{alpha}) and (n,xp)] are much higher in a fusion spectrum. As shown in this study, the compositional changes for several candidate structural materials exposed to a fast fission reactor spectrum are very low, similar to those for a characteristic fusion spectrum. However, the relatively high thermalized spectrum of a mixed spectrum reactor produces transmutation rates quite different from the ones predicted for a fusion reactor, resulting in substantial differences in the final composition of several candidate alloys after relatively short irradiation time.
Date: May 1, 1994
Creator: Gomes, I. C. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Characterization of an accelerator neutron source based on the Be(d,n) reaction

Description: Small accelerator neutron sources offer considerable potential for applied neutron radiography applications. Among the desirable features are relatively low costs, limited operating hazards, opportunities for tailoring primary neutron spectra, compactness and portability, and modest licensing requirements (compared to fission reactors). However, exploitation of this potential has been somewhat limited, in part, by incomplete knowledge of the primary-neutron yields and energy spectra from the favorable source reactions. This work describes an extensive experimental determination of zero-degree neutron yields and energy spectra from the {sup 9}Be(d,n) {sup 10}B source reaction, for incident deuterons of 2.6 to 7.0 MeV on a thick beryllium metal target. This information was acquired by means of time-of-flight measurements that were conducted with a calibrated uranium fission detector. Tables and plots of neutron-producing reaction data are presented. This information provides input which will be essential for applications involving the primary spectrum as well as for the design of neutron moderators and for calculation of thermal-neutron yield factors. Such analyses will be prerequisites in assessing the suitability of this source for various possible neutron radiography applications and, also, for assisting in the design of appropriate detectors to be used in neutron imaging devices.
Date: July 1, 1992
Creator: Meadows, J. W. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Studies of D-Li neutron source: An overview

Description: The construction of a neutron source facility able to reproduce the radiation environment predicted for a fusion reactor can be considered a very important milestone for the fusion program. Such a neutron source should allow materials testing over a wide range of neutron flux and neutron fluence. To date, none of the existing facilities reproduce the neutron flux with the energy spectrum of a fusion reactor. As a result, the major part of the required material database is obtained by extrapolations which may not be as reliable as needed to predict the real performance of those materials under fusion reactor conditions. As an example, the effect of the gas production, transmutation, atomic displacement, and other nuclear responses on the ductility and swelling and perhaps other properties as well, must be analyzed in samples which have undergone reactor conditions environment. This study is focused on the neutronics analysis of a D-Li neutron source. Neutron induced nuclear responses and neutron transport are calculated with the aim at defining the expected performance of a D-Li neutron source. The first section describes the differences in the magnitude of the neutron flux when material is present or not inside the test cell The second section deals with nuclear responses such as DPA, helium production, and nuclear heating. In the third section, calculations of the available volume above a threshold DPA value are presented. Section four presents results for the gamma-ray flux distribution. A brief discussion about tritium generation in the lithium jet is given in section live, and the conclusions are summarized in section six.
Date: June 1, 1994
Creator: Gomes, I. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Neutronics of a D-Li neutron source: An overview

Description: The importance of having a high energy (14 MeV) neutron source for fusion materials testing is widely recognized. The availability of a test volume with easy accessibility, with a radiation environment similar to the one expected for a fusion reactor, and with dimensions large enough to accommodate several small samples or a small blanket mock-up are requirements impossible to meet with the existing reactors and irradiation facilities. A D-Li neutron source meets the above mentioned requirements and can be built today with well known technology. This paper describes some relevant topics related to beam target configuration, neutron flux spectrum, and nuclear responses for a D-Li neutron source. The target-beam configuration is analyzed for different beam cross sectional areas and trade-offs between the area of the beam and related quantities such as available volume for testing, peak fluxes, and flux or nuclear responses gradient are presented. The conclusion is that the D-Li neutron source has the necessary characteristics to be the option of choice for IFMIF.
Date: May 1, 1994
Creator: Gomes, I. C. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

Description: This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented.
Date: March 1, 1992
Creator: Feautrier, D. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

Description: The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.
Date: December 16, 1991
Creator: Loomis, B. A. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Thermal response of substrate structural materials during a plasma disruption

Description: Intense energy fluxes to in-vessel components like the first wall and the divertor plate of a fusion reactor are expected during plasma disruptions. This high energy deposition in short times may cause severe surface erosion of these components resulting from melting and vaporization. Coatings and tile materials are proposed to protect and maintain the integrity of the underneath structural materials from both erosion losses as well as from high thermal stresses encountered during a disruption. The coating thickness should be large enough to withstand both erosion losses and to reduce the temperature rise in the substrate structural material. Yet the coating thickness should be minimized to reduce potential problems from radioactivity, toxicity, and plasma contamination. Tile materials such as graphite and coating materials such as tungsten and beryllium on structural materials like copper and steel are analyzed as potential divertor and first wall design options. The disruption is assumed to be composed of two phases: a thermal quench phase followed by a current quench phase. The minimum coating thickness required to protect the structural material is discussed for range of disruption parameters. 7 refs., 8 figs.
Date: December 31, 1991
Creator: Hassanein, A. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Energy-differential cross section measurement for the /sup 51/V(n,. cap alpha. )/sup 48/Sc reaction

Description: The activation method was used to measure cross sections for the /sup 51/V(n,..cap alpha..)/sup 48/Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard /sup 235/U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard /sup 252/Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references.
Date: July 1984
Creator: Kanno, I.; Meadows, J. W. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Investigation of the generation of several long-lived radionuclides of importance in fusion reactor technology: Report on a Coordinated Research Program sponsored by the International Atomic Energy Agency

Description: The IAEA initiated a Coordinated Research Program (CRP) in 1988 to obtain reliable information for 16 long-lived activation reactions of special importance to fusion reactor technology: {sup 27}Al (n, 2n){sup 26}Al, {sup 63}Cu(n,p){sup 63}Ni, {sup 94}Mo(n,p) {sup 94}Nb, {sup 109}Ag(n,2n){sup 108m}Ag, {sup 179}Hf(n,2n) {sup 178m2}Hf, {sup 182}W(n,n{sup `}a){sup 178m2}Hf, {sup 151}Eu(n,2n) {sup 150}gEu, {sup 153}Eu(n,2n){sup 152+m2}Eu, {sup 159}Tb(n, 2n){sup 158}Tb, {sup 158}Dy(n,p){sup 158}Tb, {sup 193}Ir(n,2n) {sup 192m2}Ir, {sup 187}Re(n,2n){sup 186m}Re, {sup 62}Ni(n{gamma}) {sup 63}Ni, {sup 98}Mo(n,{gamma}){sup 99}Mo({beta}-){sup 99}Tc, {sup 165}Ho(n,{gamma}) {sup 166m}Ho and {sup 191}Ir(n,{gamma}){sup 192m2}Ir. this paper documents progress achieved from the start of the program through mid- 1993.
Date: May 1, 1994
Creator: Smith, D. L. & Pashchenko, A. B.
Partner: UNT Libraries Government Documents Department

A review of nuclear data needs and their status for fusion reactor technology with some suggestions on a strategy to satisfy the requirements

Description: A review was performed on the needs and status of nuclear data for fusion-reactor technology. Generally, the status of nuclear data for fusion has been improved during the past two decades due to the dedicated effort of the nuclear data developers. However, there are still deficiencies in the nuclear data base, particularly in the areas of activation and neutron scattering cross sections. Activation cross sections were found to be unsatisfactory in 83 of the 153 reactions reviewed. The scattering cross sections for fluorine and boron will need to be improved at energies above 1 MeV. Suggestions concerning a strategy to address the specific fusion nuclear data needs for dosimetry and activation are also provided.
Date: September 1, 1991
Creator: Smith, D. L. & Cheng, E. T.
Partner: UNT Libraries Government Documents Department

Structural materials for high-heat flux applications

Description: The structural materials for the ITER, (International Thermonuclear Experimental Reactor) divertor must perform reliably under complex and diverse operating requirements. Only a limited number of materials offer a potential for meeting these requirements for the wide temperature range of interest. The candidate materials considered in the ITER design activity include copper, molybdenum, niobium alloys. Molybdenum alloys being considered include dilute alloys of the TZM type and the Mo-Re system. Niobium alloys under consideration include Nb-V-Zr and Nb-Zr systems. Copper alloys being considered include precipitation strengthened alloys of the Glidcop and MAGT type, alloys of Cu-Mo system and dispersion hardened bronzes. The projected operating conditions for the ITER divertor and the criteria for evaluating the candidate materials are reviewed. This paper summarizes the data base and presents recent experimental results on these candidate divertor structural alloys.
Date: December 31, 1991
Creator: Rybin, V. V. & Smith, D. L.
Partner: UNT Libraries Government Documents Department

Correlation of microstructure and tensile and swelling behavior of neutron-irradiated vanadium alloys

Description: The microstructures of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were characterized by transmission electron microscopy (TEM) after neutron irradiation in the Fast Flux Test Facility (FFTF) at 420 and 600{degrees}C to influences up to 114 dpa. Two types of irradiation-induced precipitates were identified, i.e., Ti{sub 2}O and Ti{sub 5}(Si,P){sub 3}. Blocky Ti(O,N,C) precipitates, which form by thermal processes during ingot fabrication, also were observed in all unirradiated and irradiated specimens. Irradiation-induced precipitation of spherical (<15 nm in diameter) Ti{sub 5}(Si,P){sub 3} phase was associated with superior resistance to void swelling. In specimens with negligible swelling, Ti{sub 5}(Si,P){sub 3} precipitation was significant. It seems that ductility is significantly reduced when the precipitation of Ti{sub 2}O and Ti{sub 5}(Si,P){sub 3} is pronounced. These observations indicate that initial composition; fabrication processes; actual solute compositions of Ti, O, N, C, P, and Si after fabrication; O, N, and C uptake during service; and irradiation-induced precipitation ae interrelated and are important factors to consider in developing an optimized alloy. 15 refs., 8 figs.
Date: October 1, 1991
Creator: Chung, H.M. & Smith, D.L.
Partner: UNT Libraries Government Documents Department

Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

Description: The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.
Date: December 16, 1991
Creator: Loomis, B.A. & Smith, D.L.
Partner: UNT Libraries Government Documents Department

Measurement of the fast neutron capture cross section of /sup 238/U relative to /sup 235/U(n,f)

Description: The capture cross section of /sup 238/U was measured using the activation technique and /sup 235/U(n,f) as a reference cross section. Capture events were measured by detection of two prominent ..gamma..-transitions in the decay of the /sup 239/U daughter nuclide, /sup 239/Np, employing a high resolution Ge(Li) detector. The system was calibrated with samples activated in a thermal neutron flux relative to the capture cross section of gold, and with an absolutely calibrated ..cap alpha..-emitter, /sup 243/Am, which decays to /sup 239/Np. Cross section measurements were carried out in the neutron energy range from 30 keV to 3 MeV. Emphasis was on absolute values between 150 keV and 1 MeV where the /sup 238/U(n,..gamma..) cross section and its cross section is small. Background from fission products was found to restrict the accuracy of the measured data at energies > 1.5 MeV.
Date: January 1, 1979
Creator: Fawcett, L.R. Jr.; Poenitz, W.P. & Smith, D.L.
Partner: UNT Libraries Government Documents Department

Discrepancy between differential and integral results for the /sup 63/Cu(n,. cap alpha. )/sup 60/Co cross sections. [Threshold to 10 MeV]

Description: The threshold-reaction /sup 63/Cu(n,..cap alpha..)/sup 60/Co is of special importance in reactor dosimetry for long-term fast-flux integration. The inconsistency in the available differential and integral data base has limited the applicability of that reaction as a reliable monitor. The availability of results from a recent measurement of the excitation function for the reaction /sup 63/Cu(n,..cap alpha..) at ANL prompted a further investigation of this problem. The implications of the new data are discussed. 24 references.
Date: January 1, 1979
Creator: Winkler, G.; Smith, D.L. & Meadows, J.W.
Partner: UNT Libraries Government Documents Department

Investigation of thick-target neutron emission from Be-9(d,n)B-10 at E/sub d/ = 7 MeV for angles other than zero degrees

Description: Double-differential measurements of neutron emission from a thick beryllium target bombarded with 7-MeV deuterons are made for neutrons above 800 keV, over the angular range of 0 to 155/sup 0/. The angular dependence of the neutron yield is found to be quite anisotropic. The importance of this anisotropy in integral neutron-induced reaction cross-section investigations is illustrated. 7 refs.,
Date: January 1, 1985
Creator: Smith, D.L.; Meadows, J.W. & Guenther, P.T.
Partner: UNT Libraries Government Documents Department

Physical sputtering code for fusion applications

Description: A computer code, DSPUT, has been developed to compute the physical sputtering yields for various plasma particles incident on candidate fusion-reactor first-wall materials. The code, which incorporates the energy and angular-dependence of the sputtering yield, treats both high- and low-Z incident particles bombarding high- and low-Z wall materials. The physical sputtering yield is expressed in terms of the atomic and mass numbers of the incident and target atoms, the surface binding energy of the wall materials, and the incident angle and energy of the particle. An auxiliary code has been written to provide sputtering yields for a Maxwellian-averaged incident particle flux. The code DSPUT has been used as part of a Monte Carlo code for analyzing plasma-wall interactions.
Date: October 1, 1981
Creator: Smith, D.L.; Brooks, J.N. & Post, D.E.
Partner: UNT Libraries Government Documents Department

Compatibility of ferritic steels with sintered Li/sub 2/O pellets in a flowing-helium environment

Description: The compatibility of ferritic HT-9 alloy and Fe-9Cr-1Mo steel with Li/sub 2/O pellets has been investigated at 823 K (550/sup 0/C) in flowing helium containing 93 or 1 ppM H/sub 2/O and 1 ppM H/sub 2/. The results indicate that the alloy specimens gain weight whereas the Li/sub 2/O pellets lose weight after exposure. There is a net loss in weight of the total reaction couple. Both steels develop an iron-rich outer scale and chromium-rich subscale. The reaction rates in helium containing 93 ppM H/sub 2/O are greater than in helium containing 1 ppM H/sub 2/O. The depth of internal penetration for specimens exposed in helium with 1 ppM H/sub 2/O reaches a constant value after approx. 3.6 Ms. The specimens exposed in helium containing 93 ppM H/sub 2/O show a gradual increase in penetration up to 7.2 Ms. For both moisture contents, the total scale thickness follows a power law and the reaction rates decrease with time. The weight losses for Li/sub 2/O pellets follow a linear law and yield values of 12.2 and 3.8%/year in helium with 93 and 1 ppM H/sub 2/O, respectively.
Date: January 1, 1983
Creator: Chopra, O.K.; Kurasawa, T. & Smith, D.L.
Partner: UNT Libraries Government Documents Department

Thermal response of substrate structural materials during a plasma disruption

Description: Intense energy fluxes to in-vessel components like the first wall and the divertor plate of a fusion reactor are expected during plasma disruptions. This high energy deposition in short times may cause severe surface erosion of these components resulting from melting and vaporization. Coatings and tile materials are proposed to protect and maintain the integrity of the underneath structural materials from both erosion losses as well as from high thermal stresses encountered during a disruption. The coating thickness should be large enough to withstand both erosion losses and to reduce the temperature rise in the substrate structural material. Yet the coating thickness should be minimized to reduce potential problems from radioactivity, toxicity, and plasma contamination. Tile materials such as graphite and coating materials such as tungsten and beryllium on structural materials like copper and steel are analyzed as potential divertor and first wall design options. The disruption is assumed to be composed of two phases: a thermal quench phase followed by a current quench phase. The minimum coating thickness required to protect the structural material is discussed for range of disruption parameters. 7 refs., 8 figs.
Date: January 1, 1991
Creator: Hassanein, A. & Smith, D.L.
Partner: UNT Libraries Government Documents Department

Assessment of solid breeding blanket options for commercial tokamak reactors

Description: This study examines the materials and design implications regarding the use of solid breeding materials with respect to compatibility with structure and coolant, tritium processing, chemical and radiation stability and thermal-hydraulics. Four solid breeding materials considered, viz., Li/sub 7/Pb/sub 2/, Li/sub 2/O, Li/sub 2/SiO/sub 3/ and LiAlO/sub 2/, are representative of the metallic and ceramic compounds available. The major design problems regarding the use of solid breeding materials relate to the limited range of operating temperatures acceptable for tritium release and chemical stability or compatibility. The allowable ranges of breeder temperatures for which in-situ tritium recovery is potentially viable are evaluated for the candidate breeding materials.
Date: January 1, 1979
Creator: Smith, D.L.; Clemmer, R.G. & Davis, J.W.
Partner: UNT Libraries Government Documents Department

Characterization of an accelerator neutron source based on the Be(d,n) reaction

Description: Small accelerator neutron sources offer considerable potential for applied neutron radiography applications. Among the desirable features are relatively low costs, limited operating hazards, opportunities for tailoring primary neutron spectra, compactness and portability, and modest licensing requirements (compared to fission reactors). However, exploitation of this potential has been somewhat limited, in part, by incomplete knowledge of the primary-neutron yields and energy spectra from the favorable source reactions. This work describes an extensive experimental determination of zero-degree neutron yields and energy spectra from the {sup 9}Be(d,n) {sup 10}B source reaction, for incident deuterons of 2.6 to 7.0 MeV on a thick beryllium metal target. This information was acquired by means of time-of-flight measurements that were conducted with a calibrated uranium fission detector. Tables and plots of neutron-producing reaction data are presented. This information provides input which will be essential for applications involving the primary spectrum as well as for the design of neutron moderators and for calculation of thermal-neutron yield factors. Such analyses will be prerequisites in assessing the suitability of this source for various possible neutron radiography applications and, also, for assisting in the design of appropriate detectors to be used in neutron imaging devices.
Date: January 1, 1992
Creator: Meadows, J.W. & Smith, D.L.
Partner: UNT Libraries Government Documents Department