3 Matching Results

Search Results

Advanced search parameters have been applied.

Advanced composites technology

Description: The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.
Date: October 1, 1998
Creator: DeTeresa, S J; Groves, S E & Sanchez, R J
Partner: UNT Libraries Government Documents Department

Accelerated stress rupture lifetime assessment for fiber composites

Description: Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.
Date: February 1, 1997
Creator: Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A. & Christensen, R.M.
Partner: UNT Libraries Government Documents Department

Mechanical charactization of sonar window materials

Description: The three-dimensional mechanical behavior of thick Spectra/epoxy sonar window materials containing various special materials is summarized in this report. Three different materials, which were fabricated by two companies known as `A` and `B` were received from the Naval Warfare Center. The three materials designated `A with microspheres (A micron),` `A without microspheres (A),` and `B` were measured for all properties. The total number of tests was reduced through the assumption that the two orthogonal, in-place directions were identical. Consequently, these materials should have only six independent elastic variables. The measured constants and strengths are given.
Date: March 25, 1996
Creator: DeTeresa, S.J.; Groves, S.E.; Harwood, P.J. & Sanchez, R.J.
Partner: UNT Libraries Government Documents Department