33 Matching Results

Search Results

Advanced search parameters have been applied.

Experimental studies in high temperature aqueous chemistry at Oak Ridge National Laboratory

Description: Experimental research is conducted and models developed in a long- standing program at Oak Ridge on aqueous chemistry at high temperatures of broad classes of electrolytes emphasizing thermodynamics of reaction equilibria and excess thermodynamic properties of electrolytes. Experimental methods, their capabilities, data analysis, and results are summarized. Relevance of the work to problems in power plants, natural and industrial processes as well as basic solution chemistry and geochemistry are given. Progress in potentiometry, electrical conductivity, flow calorimetry, and isopiestic research is described. Future in this field demands greater precision in measurements and significant gains in our understanding of the solvation phenomena especially in the vicinity and beyond the critical point for water. The communities who do research on scattering, spectroscopy, and computer simulations can help guide these efforts through studies at extreme conditions.
Date: January 1, 1996
Creator: Mesmer, R.E.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.; Ho, P.C.; Wesolowski, D.J. et al.
Partner: UNT Libraries Government Documents Department

Solubility of, and hydrogen ion adsorption on, some metal oxides in aqueous solutions to high temperatures

Description: Solubility of boehmite (AlOOH), ferrous hydroxide (Fe(OH)2)/magnetite (Fe3O4), zincite (ZnO), and brucite (Mg(OH)2) were measured over a range of temperatures (AlOOH, 100-290 C; Fe(OH)2/Fe3O4, 100-250 C; ZnO, 50-290 C; Mg(OH)2, 60-200 C) using in situ pH measurements. A hydrogen-electrode concentration cell was used; the pH range depended on the oxide. The solubility results for boehmite mainly demonstrate the method viability, while those for zincite are mainly restricted to mildly acidic to neutral pH where Zn{sup 2+} predominates in solution. The magnetite (presumably coated with Fe(OH)2) solubilities extend from pHs > 5 and, because of relevance to water/steam cycles of power plants, are compared in detail with previous studies. The same cell was used to investigate the surface adsorption-desorption thermodynamics of H ions on rutile (TiO2) and zincite to 290 C. Behavior of pH at zero-point-of-charge as function of temperature and application of the Stern-3-layer model were determined for this solid. The zincite study is still incomplete; preliminary results show trends that can be rationalized only qualitatively now with the zero- point-of-charge being apparently affected by hydration of the surface in basic solutions and specific adsorption of Na ions under the same conditions.
Date: August 1, 1997
Creator: Palmer, D.A.; Benezeth, P.; Wesolowski, D.J.; Anovitz, L.M.; Machesky, M.L.; Hayashi, Ken-ichiro et al.
Partner: UNT Libraries Government Documents Department

Geochemistry of Aluminum in High Temperature Brines

Description: The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.
Date: May 18, 1999
Creator: Benezeth, P.; Palmer, D. A. & Wesolowski, D. J.
Partner: UNT Libraries Government Documents Department

The Partitioning of Acetic, Formic, and Phosphoric Acids Between Liquid Water and Steam

Description: The chemical carryover of impurities and treatment chemicals from the boiler to the steam phase, and ultimately to the low-pressure turbine and condenser, can be quantified based on laboratory experiments preformed over ranges of temperature, pH, and composition. The two major assumptions are that thermodynamic equilibrium is maintained and no deposition, adsorption or decomposition occurs. The most recent results on acetic, formic and phosphoric acids are presented with consideration of the effects of hydrolysis and dimerization reactions. Complications arising from thermal decomposition of the organic acids are discussed. The partitioning constants for these acids and other solutes measured in this program have been incorporated into a simple thermodynamic computer code that calculates the effect of chemical and mechanical carryover on the composition of the condensate formed to varying extents in the water/steam cycle.
Date: June 22, 1999
Creator: Gruszkiewicz, M. S.; Marshall, S. L.; Palmer, D. A. & Simonson, J. M.
Partner: UNT Libraries Government Documents Department

Solubility and Surface Adsorption Characteristics of Metal Oxides to High Temperature

Description: The interaction of high temperature aqueous solutions with mineral surfaces plays a key role in many aspects of fossil, geothermal and nuclear energy production. This is an area of study in which the subsurface geochemical processes that determine brine composition, porosity and permeability changes, reservoir integrity, and fluid flow rates overlap with the industrial processes associated with corrosion of metal parts and deposition of solids in pipes and on heat exchanger surfaces. The sorption of ions on mineral surfaces is also of great interest in both the subsurface and ''above ground'' regimes of power production, playing a key role in subsurface migration of contaminants (nuclear waste disposal, geothermal brine re-injection, etc.) and in plant operations (corrosion mitigation, migration of radioactive metals from reactor core to heat exchanger, etc.). In this paper, results of the solubility and surface chemistry of metal oxides relevant to both regimes are summarized.
Date: May 4, 2001
Creator: Wesolowski, D.J.; Machesky, M.L.; Ziemniak, S.E.; Xiao, C.; Palmer, D.A.; Anovitz, L.M. et al.
Partner: UNT Libraries Government Documents Department

Measurements of the volatilities of solutes from aqueous solutions and their application to water/steam cycles

Description: Partitioning of NaSO{sub 4} and NaHSO{sub 4} between the liquid and vapor phases was measured at 300, 325 and 350{degrees}C by sampling both phases from a static platinum-lined autoclave. Sample compositions were determined by ion chromatography and acidimetric titrations. The solutions were buffered with either acid or base so that the volatility of individual species was determined. The molal thermodynamic partitioning constants were calculated by taking into account the mean stoichiometric activity coefficient in the liquid phase and the hydrolysis equilibrium constants. The vapor phase species were assumed to be neutral molecules with unit activity coefficients. The strong temperature dependence of the partitioning constant was treated by the isocoulombic method to obtain a linear dependence of the logarithm of the partitioning constant versus reciprocal temperature in Kelvin. A model is described for predicting the composition of the condensate in the water/steam cycle of power plants using drum boilers. Equilibrium between liquid and steam is assumed in the drum during boiling, and in the low pressure turbine on steam condensation. The model is based on the measured partitioning constants of HCl, NH{sub 4}Cl, NaCl, NaOH, H{sub 2}SO{sub 4}, NaHSO{sub 4}, NaSO{sub 4} and NH{sub 3}, the hydrolysis of HSO{sub 4}{sup -} and NH{sub 4}{sup +} and the ionic product of water. Two test cases are given to demonstrate the sensitivity of the pH of the first condensate to the concentrations of various anions relative to the corresponding sodium concentration in the drum. These calculations also indicate that very high concentrations of solutes can be achieved under certain conditions.
Date: February 1, 1995
Creator: Jensen, J. P.; Palmer, D. A. & Simonson, J. M.
Partner: UNT Libraries Government Documents Department

Measurements of the volatilities of electrolytes: Application to water/steam cycles

Description: This article describes recent results of a laboratory-scale research project aimed at measuring partitioning constants for a range of electrolytes that are known to be present in commercial power-plant boilers and/or are a potential hazard in terms of chemical carry-over of corrosive species to the LP turbines. Particular emphasis has been placed on measurements of NaOH, H{sub 2}SO{sub 4} and the intermediate salts NaHSO{sub 4} and Na{sub 2}SO{sub 4}. These results indicate that a rapid chemical equilibrium exists with the formation of minor accounts of {open_quotes}sulfites{close_quotes} at the elevated temperatures investigated, viz. to 350{degrees}C (662{degrees}F, or ca. 165 bar, or 2400 psi). A computerized model is under development incorporating the partitioning constants of HCl, NH{sub 4}Cl, NaCl, NaOH, H{sub 2}SO{sub 4}, NaHSO{sub 4}, and NH{sub 3}, as well as the related hydrolysis constants and the ion product of water with the goal of providing a tool for predicting the composition of steam and condensate formed in the water/steam cycle of power plants with drum boilers. These calculations are by necessity based on equilibrium conditions, but demonstrate the impact of the ratio of amount of condensate formed to steam generated, particularly with respect to the pH of the condensate and the build-up of high concentrations of solutes. Moreover, the most recent calculations indicate the importance of the Na{sup +}:anion ratio in the boiler water with regard to the pH of the first condensate. A number of examples of various boiler water compositions have been tested using this program, STEAMCYC, and some typical results are given.
Date: February 1, 1995
Creator: Palmer, D. A.; Simonson, J. M. & Jensen, J. P.
Partner: UNT Libraries Government Documents Department

Microstructural Characterization of Water-Rich Boehmite (AlO(OH)): TEM Correlation of Apparently Divergent XRD and TGA Results

Description: An understanding of the solid-phase thermodynamics and aqueous speciation of aluminum is critical to our ability to understand and predict processes in a wide variety of geologic and industrial settings. Boehmite (AIO(OH)) is an important phase in the system Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O that has been the subject of a number of structural and thermodynamic studies since its initial synthesis [l] and discovery in nature [2]. Unfortunately, it has long been recognized that thermogravimetric analysis (TGA) of both synthetic and natural boehmite samples (that appear well crystallized by powder XRD methods) yields significant excess water - typically losing 16-16.5 wt. % on heating as compared with a nominal expected weight loss of 15.0 wt. % [3,4]. The boehmite used in our experiments was synthesized hydrothermally from acid-washed gibbsite (Al(OH)<suv>3</sub>) at 200°C. Powder XRD and SEM examination showed no evidence of the presence a contaminant phase. The TGA patterns do not suggest that this is due to adsorbed water, so a structural source is likely. We therefore undertook to examine this material by TEM to clarify this phenomenon.
Date: August 1999
Creator: Allard, L. F.; Anovitz, L. M.; Benezeth, P.; Coffey, D. W.; Palmer, D. A.; Porter, W. D. et al.
Partner: UNT Libraries Government Documents Department