3 Matching Results

Search Results

Advanced search parameters have been applied.

Microstructural Characterization of Water-Rich Boehmite (AlO(OH)): TEM Correlation of Apparently Divergent XRD and TGA Results

Description: An understanding of the solid-phase thermodynamics and aqueous speciation of aluminum is critical to our ability to understand and predict processes in a wide variety of geologic and industrial settings. Boehmite (AIO(OH)) is an important phase in the system Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O that has been the subject of a number of structural and thermodynamic studies since its initial synthesis [l] and discovery in nature [2]. Unfortunately, it has long been recognized that thermogravimetric analysis (TGA) of both synthetic and natural boehmite samples (that appear well crystallized by powder XRD methods) yields significant excess water - typically losing 16-16.5 wt. % on heating as compared with a nominal expected weight loss of 15.0 wt. % [3,4]. The boehmite used in our experiments was synthesized hydrothermally from acid-washed gibbsite (Al(OH)<suv>3</sub>) at 200°C. Powder XRD and SEM examination showed no evidence of the presence a contaminant phase. The TGA patterns do not suggest that this is due to adsorbed water, so a structural source is likely. We therefore undertook to examine this material by TEM to clarify this phenomenon.
Date: August 1999
Creator: Allard, L. F.; Anovitz, L. M.; Benezeth, P.; Coffey, D. W.; Palmer, D. A.; Porter, W. D. et al.
Partner: UNT Libraries Government Documents Department

Volatility of copper

Description: The relevant aqueous thermodynamics of copper and its oxides are evaluated and summarized with emphasis on solubility, hydrolysis, and complexation. The solubilities of metallic copper, solid cuprous and cupric oxides in steam measured by Pocock and Stewart in 1963 are discussed and the latter data are fitted in the form of established empirical equations and compared to other existing results. No other sources of data were found for the solubility of copper and cupric oxide in steam and even these data are very limited. Discussion of corresponding available solubility data on both oxide phases in liquid water is given. The possible effects of complexing agents are considered. A brief discussion is provided of the role of surface adsorption in determining the fate of dissolved copper in the boiler. 37 refs., 5 figs., 3 tabs.
Date: August 1, 1996
Creator: Palmer, D. A.; Simonson, J. M. & Joyce, D. B.
Partner: UNT Libraries Government Documents Department

Solubility of, and hydrogen ion adsorption on, some metal oxides in aqueous solutions to high temperatures

Description: Solubility of boehmite (AlOOH), ferrous hydroxide (Fe(OH)2)/magnetite (Fe3O4), zincite (ZnO), and brucite (Mg(OH)2) were measured over a range of temperatures (AlOOH, 100-290 C; Fe(OH)2/Fe3O4, 100-250 C; ZnO, 50-290 C; Mg(OH)2, 60-200 C) using in situ pH measurements. A hydrogen-electrode concentration cell was used; the pH range depended on the oxide. The solubility results for boehmite mainly demonstrate the method viability, while those for zincite are mainly restricted to mildly acidic to neutral pH where Zn{sup 2+} predominates in solution. The magnetite (presumably coated with Fe(OH)2) solubilities extend from pHs > 5 and, because of relevance to water/steam cycles of power plants, are compared in detail with previous studies. The same cell was used to investigate the surface adsorption-desorption thermodynamics of H ions on rutile (TiO2) and zincite to 290 C. Behavior of pH at zero-point-of-charge as function of temperature and application of the Stern-3-layer model were determined for this solid. The zincite study is still incomplete; preliminary results show trends that can be rationalized only qualitatively now with the zero- point-of-charge being apparently affected by hydration of the surface in basic solutions and specific adsorption of Na ions under the same conditions.
Date: August 1, 1997
Creator: Palmer, D.A.; Benezeth, P.; Wesolowski, D.J.; Anovitz, L.M.; Machesky, M.L.; Hayashi, Ken-ichiro et al.
Partner: UNT Libraries Government Documents Department