7 Matching Results

Search Results

Advanced search parameters have been applied.

Mechanical Behavior Analysis of a Test Coil for MICE Coupling Solenoid during Quench

Description: The coupling magnet for the Muon Ionization Cooling Experiment has a self-inductance of 592 H and the magnet stored energy of 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The high level of stored energy in the magnet can cause high peak temperature during a quench and induce considerable impact of stresses. One test coil was built in order to validate the design method and to practice the stress and strain situation to occur in the coupling coil. In this study, the analysis on stress redistribution during a quench with sub-divided winding was performed. The stress variation may bring about failure of impregnating material such as epoxy resin, which is the curse of a new normal zone arising. Spring models for impregnating epoxy and fiber-glass cloth in the coil were used to evaluate the mechanical disturbance by impregnated materials failure. This paper presents the detailed dynamic stress and stability analysis to assess the stress distribution during the quench process and to check whether the transient loads are acceptable for the magnet.
Date: October 28, 2009
Creator: Pan, Heng; Wang, Li; Guo, Xinglong; Wu, Hong & Green, M.A.
Partner: UNT Libraries Government Documents Department

Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

Description: This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.
Date: October 10, 1994
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

Description: Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump.
Date: October 1994
Creator: Green, M. A.
Partner: UNT Libraries Government Documents Department

Program Geothm: A thermodynamic process program for geothermal power plant cycles

Description: Program GEOTHM is a thermodynamic process program now under development for the LBL Geothermal Energy Program. To date, the program development has centered upon the modeling of working fluid properties, developing thermodynamic process models, and modeling the design performance of geothermal power plants. When the program is completed, it will be able to optimize a power plant or refrigeration plant for minimum cost power or refrigeration. Furthermore, operation of the thermodynamic cycles at off design conditions will be able to be simulated. Program GEOTHM is currently able to calculate several types of geothermal power cycles using a wide variety of working fluids.
Date: October 1, 1974
Creator: Green, M.A. & Pines, H.S.
Partner: UNT Libraries Government Documents Department

Combining magnetic shielding and cryopumping for a neutral beam source

Description: This paper describes a feasible geometry for the shield/cryopump for a TFTR/Doublet type of neutral beam source, summarizes some of the design parameters, and compares the performance, fabrication, and operating cost of such a system with a more conventional system.
Date: October 1, 1979
Creator: Tanabe, J. & Green, M.A.
Partner: UNT Libraries Government Documents Department

Molecular modeling in the development of metal radiopharmaceuticals. Final progress report, July 15, 1989--July 14, 1993

Description: We began this project with a compilation of a structural library to serve as a data base containing descriptions of the molecular features of metal-labeled radiopharmaceuticals known to efficiently cross the blood-brain barrier. Such a data base is needed in order to identify structural features (size, shape, molecular surface areas and volumes) that are critical in allowing blood-brain barrier penetration. Nine metal complexes have been added to this structural library. We have completed a detailed comparison of four molecular mechanics computer programs QUANTA, SYBYL, BOYD, and MM2DREW to assess their applicability to modeling the structures of low molecular weight metal complexes. We tested the ability of each program to reproduce the crystallographic structures of 38 complexes between nickel(II) and saturated N-donor ligands. The programs were evaluated in terns of their ability to reproduce structural features such as bond lengths, bond angles, and torsion angles. Recently, we investigated the synthesis and characterization of lipophilic cationic gallium complexes with hexadentate bis(salicylaldimine) ligands. This work identified the first gallium-68 radiopharrnaceuticals that can be injected intravenously and that subsequently exhibit significant myocardial uptake followed by prolonged myocardial retention of {sup 68}Ga radioactivity. Tracers of this type remain under investigation as agents for evaluation of myocardial perfusion with positron emission tomography.
Date: October 1, 1993
Creator: Green, M. A.
Partner: UNT Libraries Government Documents Department