5 Matching Results

Search Results

Advanced search parameters have been applied.

Modeling Free Convection Flow of Liquid Hydrogen within a Cylindrical Heat Exchanger Cooled to 14 K

Description: A liquid hydrogen in a absorber for muon cooling requires that up to 300 W be removed from 20 liters of liquid hydrogen. The wall of the container is a heat exchanger between the hydrogen and 14 K helium gas in channels within the wall. The warm liquid hydrogen is circulated down the cylindrical walls of the absorber by free convection. The flow of the hydrogen is studied using FEA methods for two cases and the heat transfer coefficient to the wall is calculated. The first case is when the wall is bare. The second case is when there is a duct some distance inside the cooled wall.
Date: May 8, 2004
Creator: Green, Michael A.; U., Oxford; Yang, S.W.; Green, M.A. & Lau, W.
Partner: UNT Libraries Government Documents Department

Progress on the Coupling Coil for the MICE Channel

Description: This report describes the progress on the coupling magnet for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module (RFCC module) consists of a 1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report describes the process by which one would cool the coupling coil using a single small 4 K cooler. In addition, the coupling magnet power system and quench protection system are also described.
Date: May 8, 2005
Creator: Green, M.A.; Li, D.; Virostek, S.P.; Lau, W.; Witte, H.; Yang,S.Q. et al.
Partner: UNT Libraries Government Documents Department

Progress on the RF Coupling Coil Module Design for the MICEChannel

Description: We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of one SFOFO cell that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, which allows for independent control of the phase in each cavity and for the RF power to be fed separately. The coil package that surrounds the RF cavities is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module and the fabrication progress of a prototype 201.25-MHz cavity.
Date: May 8, 2005
Creator: Li, D.; Green, M.A.; Virostek, S.P.; Zisman, M.S.; Lau, W.; White, A.E. et al.
Partner: UNT Libraries Government Documents Department

High field solenoids for muon cooling

Description: The proposed cooling system for the muon collider will consist of a 200 meter long line of alternating field straight solenoids interspersed with bent solenoids. The muons are cooled in all directions using a 400 mm long section liquid hydrogen at high field. The muons are accelerated in the forward direction by about 900 mm long, 805 MHz RF cavities in a gradient field that goes from 6 T to -6 T in about 300 mm. The high field section in the channel starts out at an induction of about 2 T in the hydrogen. As the muons proceed down the cooling channel, the induction in the liquid hydrogen section increases to inductions as high as 30 T. The diameter of the liquid hydrogen section starts at 750 mm when the induction is 2 T. As the induction in the cooling section goes up, the diameter of the liquid hydrogen section decreases. When the high field induction is 30 T, the diameter of the liquid hydrogen section is about 80 mm. When the high field solenoid induction is below 8.5 T or 9T, niobium titanium coils are proposed for generating .the magnetic field. Above 8.5 T or 9 T to about 20 T, graded niobium tin and niobium titanium coils would be used at temperatures down to 1.8 K. Above 20 T, a graded bybrid magnet system is proposed, where the high field magnet section (above 20 T) is either a conventional water cooled coil section or a water cooled Bitter type coil. Two types of superconducting coils have been studied. They include; epoxy impregnated intrinsically stable coils, and cable in conduit conductor (CICC) coils with helium in the conduit.
Date: September 8, 1999
Creator: Green, M.A.; Eyssa, Y.; Kenny, S.; Miller, J.R. & Prestemon, S.
Partner: UNT Libraries Government Documents Department