7 Matching Results

Search Results

Advanced search parameters have been applied.

Progress on the Coupling Coil for the MICE Channel

Description: This report describes the progress on the coupling magnet for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module (RFCC module) consists of a 1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report describes the process by which one would cool the coupling coil using a single small 4 K cooler. In addition, the coupling magnet power system and quench protection system are also described.
Date: May 8, 2005
Creator: Green, M.A.; Li, D.; Virostek, S.P.; Lau, W.; Witte, H.; Yang,S.Q. et al.
Partner: UNT Libraries Government Documents Department

Progress on the Focus Coil for the MICE Channel

Description: This report describes the progress on the magnet part of the absorber focus coil module for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in Feasibility 2 study of a neutrino factory [1]. The MICE absorber focus coil module consists of a pair of superconducting solenoids, mounted on an aluminum mandrel. The coil package is in its own vacuum vessel located around an absorber. The absorber is within a separate vacuum vessel that is within the warm bore of the focusing magnet. The superconducting focus coils may either be run in the solenoid mode (with the two coils at the same polarity) or in the gradient mode (with the coils at opposite polarity, causing the field direction to flip within the magnet bore). The coils will be cooled using a pair of small 4 K coolers. This report discusses the progress on the MICE focusing magnets, the magnet current supply system, and the quench protection system.
Date: May 13, 2005
Creator: Yang, S.Q.; Lau, W.; Senanayake, R.S.; Witte, H.; Green, M.A.; Drumm, P. et al.
Partner: UNT Libraries Government Documents Department

Progress on the MICE Liquid Absorber Cooling and CryogenicDistribution System

Description: This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber.
Date: May 13, 2005
Creator: Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov,Y.; Ishimoto, S. et al.
Partner: UNT Libraries Government Documents Department

Progress on the RF Coupling Coil Module Design for the MICEChannel

Description: We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of one SFOFO cell that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, which allows for independent control of the phase in each cavity and for the RF power to be fed separately. The coil package that surrounds the RF cavities is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module and the fabrication progress of a prototype 201.25-MHz cavity.
Date: May 8, 2005
Creator: Li, D.; Green, M.A.; Virostek, S.P.; Zisman, M.S.; Lau, W.; White, A.E. et al.
Partner: UNT Libraries Government Documents Department

Liquid Cryogen Absorber for MICE

Description: The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.
Date: August 20, 2005
Creator: Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S. et al.
Partner: UNT Libraries Government Documents Department

The Development of 6061-Aluminum Windows for the MICE LiquidAbsorber

Description: The thin windows for the Muon Ionization Cooling Experiment (MICE) liquid Absorber will be fabricated from 6061-T6-aluminum. The absorber and vacuum vessel thin windows are 300-mm in diameter and are 180 mm thick at the center. The windows are designed for an internal burst pressure of 0.68 MPa (100 psig) when warm. The MICE experiment design calls for changeable windows on the absorber, so a bolted window design was adopted. Welded windows offer some potential advantages over bolted windows when they are on the absorber itself. This report describes the bolted window and its seal. This report also describes an alternate window that is welded directly to the absorber body. The welded window design presented permits the weld to be ground off and re-welded. This report presents a thermal FEA analysis of the window seal-weld, while the window is being welded. Finally, the results of a test of a welded-window are presented.
Date: August 24, 2005
Creator: Lau, W.; Yang, S.Q.; Green, M.A.; Ishimoto, S. & Swanson, J.
Partner: UNT Libraries Government Documents Department

The Cooling of a Liquid Absorber using a Small Cooler

Description: This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed.
Date: August 24, 2005
Creator: Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S. & Liggins, N.
Partner: UNT Libraries Government Documents Department