2 Matching Results

Search Results

Advanced search parameters have been applied.

The Mechanical and Thermal Design for the MICE Detector SolenoidMagnet System

Description: The detector solenoid for MICE surrounds a scintillating fiber tracker that is used to analyze the muon beam within the detector. There are two detector magnets for measuring the beam emittance entering and leaving the cooling channel that forms the central part of the experiment. The field in the region of the fiber detectors must be from 2.8 to 4 T and uniform to better than 1 percent over a volume that is 300 mm in diameter by 1000 mm long. The portion of the detector magnet that is around the uniform field section of the magnet consists of two short end coils and a long center coil. In addition, in the direction of the MICE cooling channel, there are two additional coils that are used to match the muon beam in the cooling channel to the beam required for the detectors. Each detector magnet module, with its five coils, will have a design stored-energy of about 4 MJ. Each detector magnet is designed to be cooled using three 1.5 W coolers. This report presents the mechanical and electrical parameters for the detector magnet system.
Date: September 26, 2004
Creator: Fabbricatore, P.; Farinon, S.; Perrella, M.; Bravar, U. & Green,M.A.
Partner: UNT Libraries Government Documents Department

Superconducting magnets for muon capture and phase rotation

Description: There are two key systems that must operate efficiently, in order for a muon collider to be a viable option for high energy physics. These systems are the muon production and collection system and the muon cooling system. Both systems require the use of high field superconducting solenoid magnets. This paper describes the supcrconducting solenoid system used for the capture and phase rotation of the pions that are produced on a target in a high intensity proton beam.
Date: July 26, 1999
Creator: Green, M.A. & Weggel, R.J.
Partner: UNT Libraries Government Documents Department