5 Matching Results

Search Results

Advanced search parameters have been applied.

ATF2 Proposal Volume 2

Description: For achieving the high luminosity required at the International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System (BDS), and to maintain the beam collision with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, it has been proposed to implement an ILC-like final focus optics in an extension of the existing extraction beamline of ATF at KEK. The ATF is considered to be the best platform for this exercise, since it provides an adequate ultra-low emittance electron beam in a manner dedicated to the development of ILC. The two major goals for this facility, called ATF2, are: (A) Achievement of a 37 nm beam size, and (B) control of beam position down to 2 nm level. The scientific justification for the ATF2 project and its technical design have been described in Volume 1 of the ATF2 Proposal [1]. We present here Volume 2 of the ATF2 Proposal, in which we present specifics of the construction plans and the group organization to execute the research programs at ATF2. The sections in this report have been authored by relevant ATF2 subgroups within the International ATF Collaboration. The time line of the project is described in Section 2. Section 3 discuss the structure of the international collaboration. Sections 4 and 5 discuss budget considerations, which are presented as well as the design and construction tasks to be shared by the international collaboration at ATF2. Concluding remarks have been contributed by Dr. Ewan Paterson, Chair of the International Collaboration Board of the ATF collaboration.
Date: February 27, 2006
Creator: Grishanov, B.I.; Logachev, P.; Podgorny, F.; Telnov, V.; /Novosibirsk, IYF; Angal-Kalinin, D. et al.
Partner: UNT Libraries Government Documents Department

Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

Description: To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.
Date: May 27, 2005
Creator: Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K. et al.
Partner: UNT Libraries Government Documents Department

Study of Y(3S, 2S)-> eta Y(1S) and Y(3S, 2S) -> pi pi- Y(1S) Hadronic Transitions

Description: We study the {Upsilon}(3S, 2S) {yields} {eta}{Upsilon}(1S) and {Upsilon}(3S, 2S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S) transitions with 122 x 10{sup 6} {Upsilon}(3S) and 100 x 10{sup 6} {Upsilon}(2S) mesons collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. We measure {Beta}[{Upsilon}(2S) {yields} {eta}{Upsilon}(1S)] = (2.39 {+-} 0.31(stat.) {+-} 0.14(syst.)) x 10{sup -4} and {Lambda}[{Upsilon}(2S) {yields} {eta}{Upsilon}(1S)]/{Lambda}[{Upsilon}(2S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S)] = (1.35 {+-} 0.17(stat.) {+-} 0.08(syst.)) x 10{sup -3}. We find no evidence for {Upsilon}(3S) {yields} {eta}{Upsilon}(1S) and obtain {Beta}[{Upsilon}(3S) {yields} {eta}{Upsilon}(1S)] < 1.0 x 10{sup -4} and {Lambda}[{Upsilon}(3S) {yields} {eta}{Upsilon}(1S)]/{Lambda}[{Upsilon}(3S) {yields} {pi}{sup +}{pi}{sup -}{Upsilon}(1S)] < 2.3 x 10{sup -3} as upper limits at the 90% confidence level. We also provide improved measurements of the {Upsilon}(2S)-{Upsilon}(1S) and {Upsilon}(3S)-{Upsilon}(1S) mass differences, 562.170 {+-} 0.007(stat.) {+-} 0.088(syst.)MeV/c{sup 2} and 893.813 {+-} 0.015(stat.) {+-} 0.107(syst.)MeV/c{sup 2}, respectively.
Date: March 27, 2012
Creator: Lees, J.P.; Poireau, V.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E. et al.
Partner: UNT Libraries Government Documents Department

Exclusive Production of Ds Ds-, Ds* Ds-, and Ds* Ds*- via e e- Annihilation with Initial-State-Radiation

Description: The authors perform a study of exclusive production of D{sub s}{sup +}D{sub s}{sup -}, D*{sub s}{sup +}D{sub s}{sup -}, and D*{sub s}{sup +}D*{sub s}{sup -} final states in initial-state-radiation events from e{sup +}e{sup -} annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium 1{sup --} states. The data sample corresponds to an integrated luminosity of 525 fb{sup -1} and was recorded by the BABAR experiment at the PEP-II storage ring. The D{sub s}{sup +} D{sub s}{sup -}, D*{sub s}{sup +}D{sub s}{sup -}, and D*{sub s}{sup +}D*{sub s}{sup -} mass spectra show evidence of the known {psi} resonances. Limits are extracted for the branching ratios of the decays X(4260) {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}.
Date: October 27, 2010
Creator: del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP et al.
Partner: UNT Libraries Government Documents Department

Measurement of the Absolute Branching Fractions for $D^-_s\!\rightarrow\!\ell^-\bar{\nu}_{\ell}$ and Extraction of the Decay Constant $f_{D_s}$

Description: The absolute branching fractions for the decays D{sub s}{sup -} {yields} {ell}{sup -}{bar {nu}}{sub {ell}} ({ell} = e, {mu}, or {tau}) are measured using a data sample corresponding to an integrated luminosity of 521 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. The number of D{sub s}{sup -} mesons is determined by reconstructing the recoiling system DKX{gamma} in events of the type e{sup +}e{sup -}DKXD*{sub s}{sup -}, where D*{sub s}{sup -} {yields} D{sub s}{sup -}{gamma} and X represents additional pions from fragmentation. The D{sub s}{sup -} {yields} {ell}{sup 0}{nu}{sub {ell}} events are detected by full or partial reconstruction of the recoiling system DKX{gamma}{ell}. The branching fraction measurements are combined to determine the D{sub s}{sup -} decay constant f{sub D{sub s}} = (258.6 {+-} 6.4 {+-} 7.5) MeV, where the first uncertainty is statistical and the second is systematic.
Date: October 27, 2010
Creator: del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP et al.
Partner: UNT Libraries Government Documents Department